1
|
Ma S, Huis In't Veld RV, Pinos EDL, Ossendorp FA, Jager MJ. Targeting ocular malignancies using a novel light-activated virus-like drug conjugate. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:49-57. [PMID: 39911685 PMCID: PMC11795595 DOI: 10.1016/j.aopr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 02/07/2025]
Abstract
Background Targeted therapy is a promising approach to improve the treatment of tumors, including ocular malignancies. Current therapies, such as radiotherapy and surgery, often lead to serious damage to vision or to loss of the eye. New approaches have examined nanoparticles for use as targeted delivery vehicles for drugs. A newly-developed virus-like drug conjugate is a promising nanoparticle with a defined target: the novel virus-like particle-photosensitizer conjugate Belzupacap sarotalocan (Bel-sar, previous name AU-011). Main text In this review, we summarize the application of this novel light-activated virus-like particle conjugate in pre-clinical and clinical studies and discuss its potential to treat ocular malignancies, such as uveal melanoma and conjunctival melanoma. We furthermore discuss the combination with immunotherapy and its application on pigmented and non-pigmented tumors as well as its effect on macrophage polarization, which is important to achieve effective results in immunotherapy. Conclusions Belzupacap sarotalocan (Bel-sar) is a promising targeted drug carrier that enhances tumor-specific delivery and minimizes off-target effects. Its photodynamic therapy effectively treats pigmented and non-pigmented tumors while inducing immunogenic cell death through DAMP exposure, triggering local and systemic immune responses. Combining Bel-sar PDT with immunotherapy improves efficacy in preclinical models, warranting further clinical investigation.
Collapse
Affiliation(s)
- Sen Ma
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Ruben V. Huis In't Veld
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), the Netherlands
| | | | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Center (LUMC), the Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
2
|
Panigrahi A, Benicky J, Aljuhani R, Mukherjee P, Nováková Z, Bařinka C, Goldman R. Galectin-3-Binding Protein Inhibits Extracellular Heparan 6-O-Endosulfatase Sulf-2. Mol Cell Proteomics 2024; 23:100793. [PMID: 38825040 PMCID: PMC11259796 DOI: 10.1016/j.mcpro.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA.
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA
| | - Reem Aljuhani
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Han M, Zhu H, Chen X, Luo X. 6-O-endosulfatases in tumor metastasis: heparan sulfate proteoglycans modification and potential therapeutic targets. Am J Cancer Res 2024; 14:897-916. [PMID: 38455409 PMCID: PMC10915330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Metastasis is the leading cause of cancer-associated mortality. Although advances in the targeted treatment and immunotherapy have improved the management of some cancers, the prognosis of metastatic cancers remains unsatisfied. Therefore, the specific mechanisms in tumor metastasis need further investigation. 6-O-endosulfatases (SULFs), comprising sulfatase1 (SULF1) and sulfatase 2 (SULF2), play pivotal roles in the post-synthetic modifications of heparan sulfate proteoglycans (HSPGs). Consequently, these extracellular enzymes can regulate a variety of downstream pathways by modulating HSPGs function. During the past decades, researchers have detected the expression of SULF1 and SULF2 in most cancers and revealed their roles in tumor progression and metastasis. Herein we reviewed the metastasis steps which SULFs participated in, elucidated the specific roles and mechanisms of SULFs in metastasis process, and discussed the effects of SULFs in different types of cancers. Moreover, we summarized the role of targeting SULFs in combination therapy to treat metastatic cancers, which provided some novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xin Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| |
Collapse
|
4
|
Li J, Wang X, Li Z, Li M, Zheng X, Zheng D, Wang Y, Xi M. SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer. Curr Cancer Drug Targets 2024; 24:820-834. [PMID: 37539927 DOI: 10.2174/1568009623666230804161607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND PURPOSE Sulfatase 1 (SULF1) can regulate the binding of numerous signaling molecules by removing 6-O-sulfate from heparan sulfate proteoglycans (HSPGs) to affect numerous physiological and pathological processes. Our research aimed to investigate the effect of the SULF1-mediated VEGFR2/PI3K/AKT signaling pathway on tumorigenesis and development of cervical cancer (CC). METHODS The expression and prognostic values of SULF1 in patients with CC were analyzed through bioinformatics analysis, qRT-PCR, immunohistochemistry, and western blot. The function and regulatory mechanism of SULF1 in proliferation, migration, and invasion of cervical cancer cells were examined through lentivirus transduction, CCK8, flow cytometry analysis, plate colony formation assay, scratch assay, transwell assay, western blot, VEGFR2 inhibitor (Ki8751), and mouse models. RESULTS SULF1 expression was significantly upregulated in CC tissues, which was significantly associated with poor prognosis of patients with CC. In vitro, the upregulation of SULF1 expression in HeLa cells promoted cell proliferation, colony formation, migration, and invasion while inhibiting apoptosis. Conversely, the downregulation of SULF1 expression had the opposite effect. In vivo, the upregulation of SULF1 expression resulted in a significant increase in both tumor growth and angiogenesis, while its downregulation had the opposite effect. Furthermore, western blot detection and cell function rescue assay confirmed that the upregulation of SULF1 in HeLa cells promoted the tumorigenic behaviors of cancer cells by activating the VEGFR2/PI3K/AKT signaling pathway. CONCLUSION SULF1 plays an oncogenic role in the tumorigenesis and development of CC, indicating its potential as a novel molecular target for gene-targeted therapy in patients with CC.
Collapse
Affiliation(s)
- Juan Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Diagnosis and Treatment for Cervical Diseases, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xihao Wang
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Minzhen Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelian Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Danxi Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
5
|
Panigrahi A, Benicky J, Aljuhani R, Mukherjee P, Nováková Z, Bařinka C, Goldman R. Galectin-3-binding protein inhibits extracellular heparan 6- O-endosulfatse Sulf-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572603. [PMID: 38187586 PMCID: PMC10769223 DOI: 10.1101/2023.12.20.572603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). In spite of its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the secretome of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP has functional relevance, and may regulate physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
6
|
Mukherjee P, Zhou X, Benicky J, Panigrahi A, Aljuhani R, Liu J, Ailles L, Pomin VH, Wang Z, Goldman R. Heparan-6- O-Endosulfatase 2 Promotes Invasiveness of Head and Neck Squamous Carcinoma Cell Lines in Co-Cultures with Cancer-Associated Fibroblasts. Cancers (Basel) 2023; 15:5168. [PMID: 37958342 PMCID: PMC10650326 DOI: 10.3390/cancers15215168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Local invasiveness of head and neck squamous cell carcinoma (HNSCC) is a complex phenomenon supported by interaction of the cancer cells with the tumor microenvironment (TME). We and others have shown that cancer-associated fibroblasts (CAFs) are a component of the TME that can promote local invasion in HNSCC and other cancers. Here we report that the secretory enzyme heparan-6-O-endosulfatase 2 (Sulf-2) directly affects the CAF-supported invasion of the HNSCC cell lines SCC35 and Cal33 into Matrigel. The Sulf-2 knockout (KO) cells differ from their wild type counterparts in their spheroid growth and formation, and the Sulf-2-KO leads to decreased invasion in a spheroid co-culture model with the CAF. Next, we investigated whether a fucosylated chondroitin sulfate isolated from the sea cucumber Holothuria floridana (HfFucCS) affects the activity of the Sulf-2 enzyme. Our results show that HfFucCS not only efficiently inhibits the Sulf-2 enzymatic activity but, like the Sulf-2 knockout, inhibits Matrigel invasion of SCC35 and Cal33 cells co-cultured with primary HNSCC CAF. These findings suggest that the heparan-6-O-endosulfatases regulate local invasion and could be therapeutically targeted with the inhibitory activity of a marine glycosaminoglycan.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
| | - Xin Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
| | - Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Zhangjie Wang
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC 27606, USA;
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
7
|
WANG J, LU L, HE X, MA L, CHEN T, LI G, YU H. [Identification of SULF1 as a Shared Gene in Idiopathic Pulmonary Fibrosis
and Lung Adenocarcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:669-683. [PMID: 37985153 PMCID: PMC10600753 DOI: 10.3779/j.issn.1009-3419.2023.101.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an idiopathic chronic, progressive interstitial lung disease with a diagnosed median survival of 3-5 years. IPF is associated with an increased risk of lung cancer. Therefore, exploring the shared pathogenic genes and molecular pathways between IPF and lung adenocarcinoma (LUAD) holds significant importance for the development of novel therapeutic approaches and personalized precision treatment strategies for IPF combined with lung cancer. METHODS Bioinformatics analysis was conducted using publicly available gene expression datasets of IPF and LUAD from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis was employed to identify common genes involved in the progression of both diseases, followed by functional enrichment analysis. Subsequently, additional datasets were used to pinpoint the core shared genes between the two diseases. The relationship between core shared genes and prognosis, as well as their expression patterns, clinical relevance, genetic characteristics, and immune-related functions in LUAD, were analyzed using The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing datasets. Finally, potential therapeutic drugs related to the identified genes were screened through drug databases. RESULTS A total of 529 shared genes between IPF and LUAD were identified. Among them, SULF1 emerged as a core shared gene associated with poor prognosis. It exhibited significantly elevated expression levels in LUAD tissues, concomitant with high mutation rates, genomic heterogeneity, and an immunosuppressive microenvironment. Subsequent single-cell RNA-seq analysis revealed that the high expression of SULF1 primarily originated from tumor-associated fibroblasts. This study further demonstrated an association between SULF1 expression and tumor drug sensitivity, and it identified potential small-molecule drugs targeting SULF1 highly expressed fibroblasts. CONCLUSIONS This study identified a set of shared molecular pathways and core genes between IPF and LUAD. Notably, SULF1 may serve as a potential immune-related biomarker and therapeutic target for both diseases.
Collapse
|
8
|
Wang X, Song R, Li X, He K, Ma L, Li Y. Bioinformatics analysis of the genes associated with co-occurrence of heart failure and lung cancer. Exp Biol Med (Maywood) 2023; 248:843-857. [PMID: 37073135 PMCID: PMC10484198 DOI: 10.1177/15353702231162081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 04/20/2023] Open
Abstract
Deaths of non-cardiac causes in patients with heart failure (HF) are on the rise, including lung cancer (LC). However, the common mechanisms behind the two diseases need to be further explored. This study aimed to improve understanding on the co-occurrence of LC and HF. In this study, gene expression profiles of HF (GSE57338) and LC (GSE151101) were comprehensively analyzed using the Gene Expression Omnibus database. Functional annotation, protein-protein interaction network, hub gene identification, and co-expression analysis were proceeded when the co-differentially expressed genes in HF and LC were identified. Among 44 common differentially expressed genes, 17 hub genes were identified to be associated with the co-occurrence of LC and HF; the hub genes were verified in 2 other data sets. Nine genes, including ALOX5, FPR1, ADAMTS15, ALOX5AP, ANPEP, SULF1, C1orf162, VSIG4, and LYVE1 were selected after screening. Functional analysis was performed with particular emphasis on extracellular matrix organization and regulation of leukocyte activation. Our findings suggest that disorders of the immune system could cause the co-occurrence of HF and LC. They also suggest that abnormal activation of extracellular matrix organization, inflammatory response, and other immune signaling pathways are essential in disorders of the immune system. The validated genes provide new perspectives on the common underlying pathophysiology of HF and LC, and may aid further investigation in this field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Song
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Xin Li
- Cardiovascular Medicine Department, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Kai He
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Marmesin and Marmelosin Interact with the Heparan Sulfatase-2 Active Site: Potential Mechanism for Phytochemicals from Bael Fruit Extract as Antitumor Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9982194. [PMID: 36644581 PMCID: PMC9836799 DOI: 10.1155/2023/9982194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2023]
Abstract
Human heparan sulfatase-2 (HSULF-2) is an oncoprotein overexpressed in the surface of all types of tumor cells and its activity plays a critical role in cancer survival and progression. Our previous studies have shown that bael fruit extract, containing marmesin and marmelosin, inhibits the HSULF-2 activity and kills breast tumor cells, but the mechanism of these processes remains fairly known mainly because the HSULF-2's 3D structure is partially known. Herein, we aimed at providing an in silico molecular mechanism of the inhibition of human HSULF-2 by phytochemicals from bael fruit extract. Pharmacokinetic parameters of the main phytochemicals contained in the bael fruit extract, sequence-based 3D structure of human HSULF-2, and the interaction of bael fruit's phytochemicals with the enzyme active site was modeled, evaluated, and verified. Docking studies revealed marmesin and marmelosin as potential inhibitors with binding score -8.5 and -7.7 Kcal/mol; these results were validated using molecular dynamics simulations, which exhibited higher stability of the protein-ligand complexes. Taking together, with our earlier in vitro data, our computational analyses suggest that marmesin and marmelosin interact at the active site of HSULF-2 providing a potential mechanism for its inhibition and consequent antitumor activity by phytochemicals contained in the bael fruit extract.
Collapse
|
10
|
Yang Y, Ahn J, Edwards NJ, Benicky J, Rozeboom AM, Davidson B, Karamboulas C, Nixon KCJ, Ailles L, Goldman R. Extracellular Heparan 6- O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers (Basel) 2022; 14:cancers14225553. [PMID: 36428645 PMCID: PMC9688903 DOI: 10.3390/cancers14225553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20057, USA
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Kevin C. J. Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Radoslav Goldman
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Correspondence: ; Tel.: +1-202-687-9868
| |
Collapse
|
11
|
El Masri R, Seffouh A, Roelants C, Seffouh I, Gout E, Pérard J, Dalonneau F, Nishitsuji K, Noborn F, Nikpour M, Larson G, Crétinon Y, Friedel-Arboleas M, Uchimura K, Daniel R, Lortat-Jacob H, Filhol O, Vivès RR. Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Rep 2022; 38:110516. [PMID: 35294879 DOI: 10.1016/j.celrep.2022.110516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Sulfs represent a class of unconventional sulfatases which provide an original post-synthetic regulatory mechanism for heparan sulfate polysaccharides and are involved in multiple physiopathological processes, including cancer. However, Sulfs remain poorly characterized enzymes, with major discrepancies regarding their in vivo functions. Here we show that human Sulf-2 (HSulf-2) harbors a chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain, attached to the enzyme substrate-binding domain. We demonstrate that this GAG chain affects enzyme/substrate recognition and tunes HSulf-2 activity in vitro and in vivo. In addition, we show that mammalian hyaluronidase acts as a promoter of HSulf-2 activity by digesting its GAG chain. In conclusion, our results highlight HSulf-2 as a proteoglycan-related enzyme and its GAG chain as a critical non-catalytic modulator of the enzyme activity. These findings contribute to clarifying the conflicting data on the activities of the Sulfs.
Collapse
Affiliation(s)
- Rana El Masri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Amal Seffouh
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Caroline Roelants
- Université Grenoble Alpes, INSERM, CEA, IRIG-Biosanté, UMR 1292, 38000 Grenoble, France
| | - Ilham Seffouh
- Université Paris-Saclay, Université Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Evelyne Gout
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Julien Pérard
- Université Grenoble Alpes, CNRS, IRIG - DIESE - CBM, CEA-Grenoble, 38000 Grenoble, France
| | | | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fredrik Noborn
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yoann Crétinon
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Kenji Uchimura
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Régis Daniel
- Université Paris-Saclay, Université Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | | | - Odile Filhol
- Université Grenoble Alpes, INSERM, CEA, IRIG-Biosanté, UMR 1292, 38000 Grenoble, France.
| | - Romain R Vivès
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| |
Collapse
|
12
|
Uddin MN, Wang X. Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 2022; 29:541-561. [PMID: 35020130 DOI: 10.1007/s12282-022-01332-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aberrant expression of stromal gene signatures in breast cancer has been widely studied. However, the association of stromal gene signatures with tumor immunity, progression, and clinical outcomes remains lacking. METHODS Based on eight breast tumor stroma (BTS) transcriptomics datasets, we identified differentially expressed genes (DEGs) between BTS and normal breast stroma. Based on the DEGs, we identified dysregulated pathways and prognostic hub genes, hub oncogenes, hub protein kinases, and other key marker genes associated with breast cancer. Moreover, we compared the enrichment levels of stromal and immune signatures between breast cancer patients with bad and good clinical outcomes. We also investigated the association between tumor stroma-related genes and breast cancer progression. RESULTS The DEGs included 782 upregulated and 276 downregulated genes in BTS versus normal breast stroma. The pathways significantly associated with the DEGs included cytokine-cytokine receptor interaction, chemokine signaling, T cell receptor signaling, cell adhesion molecules, focal adhesion, and extracellular matrix-receptor interaction. Protein-protein interaction network analysis identified the stromal hub genes with prognostic value in breast cancer, including two oncogenes (COL1A1 and IL21R), two protein kinases encoding genes (PRKACA and CSK), and a growth factor encoding gene (PLAU). Moreover, we observed that the patients with bad clinical outcomes were less enriched in stromal and antitumor immune signatures (CD8 + T cells and tumor-infiltrating lymphocytes) but more enriched in tumor cells and immunosuppressive signatures (MDSCs and CD4 + regulatory T cells) compared with the patients with good clinical outcomes. The ratios of CD8 + /CD4 + regulatory T cells were lower in the patients with bad clinical outcomes. Furthermore, we identified the tumor stroma-related genes, including MCM4, SPECC1, IMPA2, and AGO2, which were gradually upregulated through grade I, II, and III breast cancers. In contrast, COL14A1, ESR1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, LHFP, MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11 were gradually downregulated through grade I, II, and III breast cancers. It suggests that the expression of these stromal genes has an association with the progression of breast cancers. These progression-associated genes also displayed an expression association with recurrence-free survival in breast cancer patients. CONCLUSIONS This study identified tumor stroma-associated biomarkers correlated with deregulated pathways, tumor immunity, tumor progression, and clinical outcomes in breast cancer. Our findings provide new insights into the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
14
|
Kim HJ, Kim HS, Hong YH. Sulfatase 1 and sulfatase 2 as novel regulators of macrophage antigen presentation and phagocytosis. Yeungnam Univ J Med 2021; 38:326-336. [PMID: 34157797 PMCID: PMC8688788 DOI: 10.12701/yujm.2021.01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sulfation of heparan sulfate proteoglycans (HSPGs) is critical for the binding and signaling of ligands that mediate inflammation. Extracellular 6-O-endosulfatases regulate posttranslational sulfation levels and patterns of HSPGs. In this study, extracellular 6-O-endosulfatases, sulfatase (Sulf)-1 and Sulf-2, were evaluated for their expression and function in inflammatory cells and tissues. Methods Harvested human peripheral blood mononuclear cells were treated with phytohemagglutinin and lipopolysaccharide, and murine peritoneal macrophages were stimulated with interleukin (IL)-1β for the evaluation of Sulf-1 and Sulf-2 expression. Sulf expression in inflammatory cells was examined in the human rheumatoid arthritis (RA) synovium by immunofluorescence staining. The antigen presentation and phagocytic activities of macrophages were compared according to the expression state of Sulfs. Sulfs-knockdown macrophages and Sulfs-overexpressing macrophages were generated using small interfering RNAs and pcDNA3.1 plasmids for Sulf-1 and Sulf-2, respectively. Results Lymphocytes and monocytes showed weak Sulf expression, which remained unaffected by IL-1β. However, peritoneal macrophages showed increased expression of Sulfs upon stimulation with IL-1β. In human RA synovium, two-colored double immunofluorescent staining of Sulfs and CD68 revealed active upregulation of Sulfs in macrophages of inflamed tissues, but not in lymphocytes of lymphoid follicles. Macrophages are professional antigen-presenting cells. The antigen presentation and phagocytic activities of macrophages were dependent on the level of Sulf expression, suppressed in Sulfs-knockdown macrophages, and enhanced in Sulfs-overexpressing macrophages. Conclusion The results demonstrate that upregulation of Sulfs in macrophages occurs in response to inflammation, and Sulfs actively regulate the antigen presentation and phagocytic activities of macrophages as novel immune regulators.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Division of Rheumatology, Department of Internal Medicine, CHA University, CHA Gumi Medical Center, Gumi, Korea
| | - Hee-Sun Kim
- Department of Microbiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Young-Hoon Hong
- Division of Rheumatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
15
|
Yang YW, Jablons DM, Lemjabbar-Alaoui H. Extracellular sulfatases as potential blood-based biomarkers for early detection of lung cancer. Exp Lung Res 2021; 47:261-279. [PMID: 33908819 DOI: 10.1080/01902148.2021.1885525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Non-small lung (NSCLC) is the deadliest cancer, with survival measured in months. Earlier diagnosis using a robust biomarker would likely improve survival. This study aims to determine whether blood levels of the extracellular sulfatases (SULF1 and SULF2) and their bio-activity can serve as novel biomarkers for NSCLC early detection. MATERIALS AND METHODS Using human plasma specimens from NSCLC patients, nonmalignant COPD patients, and healthy individuals, we determined the association between plasma SULF levels and the presence of NSCLC. We assessed the plasma SULF levels as a function of sex and age. We also evaluated the plasma levels of heparin-binding factors potentially mobilized by the SULFs. To increase test specificity of blood SULF2 as a biomarker for the early diagnosis of NSCLC, we investigated the presence of a tumor-specific SULF2 isoform released in the blood, which could be used as a biomarker alone or in multiplex assays. RESULTS The median level of plasma SULF2 was significantly elevated in NSCLC patients than in healthy controls (∼2 fold). However, these data were confounded by age. Surprisingly, COPD patients also showed a dramatically increased SULF2 plasma level. We showed a significant increase in the median plasma levels of several HSPG-binding factors in early-stage NSCLC patients compared to controls. Furthermore, we revealed a significant positive correlation of the SULF2 protein level with the plasma levels of two HSPG-binding factors IL6 and IL8. We demonstrated that NSCLC cancer cells and tissues overexpress a SULF2 splice variant. We determined the presence of a SULF2 splice variant form in NSCLC plasma, which was not detectable in COPD and control plasmas. CONCLUSION Our findings highlight the potential for the plasma levels of SULF2 protein and its bio-activity as novel blood biomarkers for early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - David M Jablons
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| | - Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
17
|
Yang YW, Phillips JJ, Jablons DM, Lemjabbar-Alaoui H. Development of novel monoclonal antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase. Biochim Biophys Acta Gen Subj 2020; 1865:129802. [PMID: 33276062 DOI: 10.1016/j.bbagen.2020.129802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell-surface heparan sulfate proteoglycans (HSPGs) function as receptors or co-receptors for ligand binding and mediate the transmission of critical extracellular signals into cells. The complex and dynamic modifications of heparan sulfates on the core proteins are highly regulated to achieve precise signaling transduction. Extracellular endosulfatase Sulf1 catalyzes the removal of 6-O sulfation from HSPGs and thus regulates signaling mediated by 6-O sulfation on HSPGs. The expression of Sulf1 is altered in many cancers. Further studies are needed to clarify Sulf1 role in tumorigenesis, and new tools that can expand our knowledge in this field are required. METHODS We have developed and validated novel SULF1 monoclonal antibodies (mAbs). The isotype and subclass for each of these antibodies were determined. These antibodies provide invaluable reagents to assess SULF1- tissue and blood levels by immunohistochemistry and ELISA assays, respectively. RESULTS This study reports novel mAbs and immunoassays developed for sensitive and specific human Sulf1 protein detection. Using these SULF1 mAbs, we developed an ELISA assay to investigate whether blood-derived SULF1 may be a useful biomarker for detecting cancer early. Furthermore, we have demonstrated the utility of these antibodies for Sulf1 protein detection, localization, and quantification in biospecimens using various immunoassays. CONCLUSIONS This study describes novel Sulf1 mAbs suitable for various immunoassays, including Western blot analysis, ELISA, and immunohistochemistry, which can help understand Sulf1 pathophysiological role. GENERAL SIGNIFICANCE New tools to assess and clarify SULF1 role in tumorigenesis are needed. Our novel Sulf1 mAbs and immunoassays assay may have utility for such application.
Collapse
Affiliation(s)
- Yi-Wei Yang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hassan Lemjabbar-Alaoui
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
19
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
20
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
21
|
Brasil da Costa FH, Lewis MS, Truong A, Carson DD, Farach-Carson MC. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. PLoS One 2020; 15:e0230354. [PMID: 32413029 PMCID: PMC7228113 DOI: 10.1371/journal.pone.0230354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1's role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.
Collapse
Affiliation(s)
- Fabio Henrique Brasil da Costa
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, United States of America
| | - Michael S. Lewis
- Department of Pathology and Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, United States of America
| | - Anna Truong
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Daniel D. Carson
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mary C. Farach-Carson
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, United States of America
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| |
Collapse
|
22
|
Chiu LT, Sabbavarapu NM, Lin WC, Fan CY, Wu CC, Cheng TJR, Wong CH, Hung SC. Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo- O-sulfatase-1. J Am Chem Soc 2020; 142:5282-5292. [PMID: 32083852 DOI: 10.1021/jacs.0c00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human endo-O-sulfatases (Sulf-1 and Sulf-2) are extracellular heparan sulfate proteoglycan (HSPG)-specific 6-O-endosulfatases, which regulate a multitude of cell-signaling events through heparan sulfate (HS)-protein interactions and are associated with the onset of osteoarthritis. These endo-O-sulfatases are transported onto the cell surface to liberate the 6-sulfate groups from the internal d-glucosamine residues in the highly sulfated subdomains of HSPGs. In this study, a variety of HS oligosaccharides with different chain lengths and N- and O-sulfation patterns via chemical synthesis were systematically studied about the substrate specificity of human Sulf-1 employing the fluorogenic substrate 4-methylumbelliferyl sulfate (4-MUS) in a competition assay. The trisaccharide sulfate IdoA2S-GlcNS6S-IdoA2S was found to be the minimal-size substrate for Sulf-1, and substitution of the sulfate group at the 6-O position of the d-glucosamine unit with the sulfonamide motif effectively inhibited the Sulf-1 activity with IC50 = 0.53 μM, Ki = 0.36 μM, and KD = 12 nM.
Collapse
Affiliation(s)
- Li-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, 155, Section 2, Linong Street, Taipei 115, Taiwan
| | | | - Wei-Chen Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chiao-Yuan Fan
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chih-Chung Wu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road BCC 338, La Jolla, California 92037, United States
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Applied Science, National Taitung University, 369, Section 2, University Road, Taitung 95092, Taiwan
| |
Collapse
|
23
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
24
|
Lyu Y, Cheng Y, Wang B, Chen L, Zhao S. Sulfatase 1 expression in pancreatic cancer and its correlation with clinicopathological features and postoperative prognosis. Cancer Biomark 2018; 22:701-707. [PMID: 29843217 DOI: 10.3233/cbm-181210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent studies have shown that Sulfatase 1 (SULF1) plays a crucial role in the genesis, development, and progression of tumors. However, there have been few studies on the role of SULF1 in pancreatic cancer. OBJECTIVE The present study examined the differences in SULF1 expression levels between pancreatic cancer and normal tissues, and their correlation with the clinicopathological features and prognosis. METHODS A total of 65 pancreatic cancer samples were enrolled in this study. An immunohistochemical assay were used in this study. The relationship between SULF1 expression and clinicopathological features were tested using χ2 test or Fisher's exact test. The Kaplan-Meier method was used to calculate the cumulative survival rates of the patients. RESULTS The study showed that the SULF1 expression level was higher in pancreatic cancer tissues than in normal tissues. Analysis of the clinical and pathological data of patients revealed that high SULF1 expression was associated with later T, N, and TNM stages, higher CA19-9 levels, smaller tumor size, and poorer prognosis. CONCLUSIONS These findings suggested that SULF1 could be an indicator of the clinicopathological features and prognosis of pancreatic cancer.
Collapse
|
25
|
Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Anal Cell Pathol (Amst) 2018; 2018:8389595. [PMID: 30027065 PMCID: PMC6031075 DOI: 10.1155/2018/8389595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, accounting for more than 610,000 mortalities every year. Prognosis of patients is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to investigate molecules involved in colorectal cancer tumorigenesis, with possible use as tumor markers. Heparan sulfate proteoglycans are complex molecules present in the cell membrane and extracellular matrix, which play vital roles in cell adhesion, migration, proliferation, and signaling pathways. In colorectal cancer, the cell surface proteoglycan syndecan-2 is upregulated and increases cell migration. Moreover, expression of syndecan-1 and syndecan-4, generally antitumor molecules, is reduced. Levels of glypicans and perlecan are also altered in colorectal cancer; however, their role in tumor progression is not fully understood. In addition, studies have reported increased heparan sulfate remodeling enzymes, as the endosulfatases. Therefore, heparan sulfate proteoglycans are candidate molecules to clarify colorectal cancer tumorigenesis, as well as important targets to therapy and diagnosis.
Collapse
|
26
|
Lee HY, Yeh BW, Chan TC, Yang KF, Li WM, Huang CN, Ke HL, Li CC, Yeh HC, Liang PI, Shiue YL, Wu WJ, Li CF. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget 2018; 8:47216-47229. [PMID: 28525382 PMCID: PMC5564558 DOI: 10.18632/oncotarget.17590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/17/2017] [Indexed: 12/13/2022] Open
Abstract
Urothelial carcinoma (UC), arising from the urothelium of the urinary tract, can occur in the upper (UTUC) and the urinary bladder (UBUC). A representative molecular aberration for UC characteristics and prognosis remains unclear. Data mining of Gene Expression Omnibus focusing on UBUC, we identified sulfatase-1 (SULF1) upregulation is associated with UC progression. SULF1 controls the sulfation status of heparan sulfate proteoglycans and plays a role in tumor growth and metastasis, while its role is unexplored in UC. To first elucidate the clinical significance of SULF1 transcript expression, real-time quantitative RT-PCR was performed in a pilot study of 24 UTUC and 24 UBUC fresh samples. We identified that increased SULF1 transcript abundance was associated with higher primary tumor (pT) status. By testing SULF1 immunoexpression in independent UTUC and UBUC cohorts consisted of 340 and 295 cases, respectively, high SULF1 expression was significantly associated with advanced pT and nodal status, higher histological grade and presence of vascular invasion in both UTUC and UBUC. In multivariate survival analyses, high SULF1 expression was independently associated with worse DSS (UTUC hazard ratio [HR] = 3.574, P < 0.001; UBUC HR = 2.523, P = 0.011) and MeFS (UTUC HR = 3.233, P < 0.001; UBUC HR = 1.851, P = 0.021). Furthermore, depletion of SULF1 expression by using RNA interference leaded to impaired cell proliferative, migratory, and invasive abilities in vitro. In addition, we further confirmed oncogenic role of SULF1 with gain-of function experiments. In conclusion, our findings implicate the oncogenic role of SULF1 expression in UC, suggesting SULF1 as a prognostic and therapeutic target of UC.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Kei-Fu Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Kines RC, Varsavsky I, Choudhary S, Bhattacharya D, Spring S, McLaughlin R, Kang SJ, Grossniklaus HE, Vavvas D, Monks S, MacDougall JR, de Los Pinos E, Schiller JT. An Infrared Dye-Conjugated Virus-like Particle for the Treatment of Primary Uveal Melanoma. Mol Cancer Ther 2017; 17:565-574. [PMID: 29242243 DOI: 10.1158/1535-7163.mct-17-0953] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
The work outlined herein describes AU-011, a novel recombinant papillomavirus-like particle (VLP) drug conjugate and its initial evaluation as a potential treatment for primary uveal melanoma. The VLP is conjugated with a phthalocyanine photosensitizer, IRDye 700DX, that exerts its cytotoxic effect through photoactivation with a near-infrared laser. We assessed the anticancer properties of AU-011 in vitro utilizing a panel of human cancer cell lines and in vivo using murine subcutaneous and rabbit orthotopic xenograft models of uveal melanoma. The specificity of VLP binding (tumor targeting), mediated through cell surface heparan sulfate proteoglycans (HSPG), was assessed using HSPG-deficient cells and by inclusion of heparin in in vitro studies. Our results provide evidence of potent and selective anticancer activity, both in vitro and in vivo AU-011 activity was blocked by inhibiting its association with HSPG using heparin and using cells lacking surface HSPG, indicating that the tumor tropism of the VLP was not affected by dye conjugation and cell association is critical for AU-011-mediated cytotoxicity. Using the uveal melanoma xenograft models, we observed tumor uptake following intravenous (murine) and intravitreal (rabbit) administration and, after photoactivation, potent dose-dependent tumor responses. Furthermore, in the rabbit orthotopic model, which closely models uveal melanoma as it presents in the clinic, tumor treatment spared the retina and adjacent ocular structures. Our results support further clinical development of this novel therapeutic modality that might transform visual outcomes and provide a targeted therapy for the early-stage treatment of patients with this rare and life-threatening disease. Mol Cancer Ther; 17(2); 565-74. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shin J Kang
- Emory Eye Center, Emory University, Atlanta, Georgia
| | | | - Demetrios Vavvas
- Angiogenesis Laboratory Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - John T Schiller
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
28
|
Jung CH, Ho JN, Park JK, Kim EM, Hwang SG, Um HD. Involvement of SULF2 in y-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression. Oncotarget 2017; 7:16090-103. [PMID: 26895473 PMCID: PMC4941299 DOI: 10.18632/oncotarget.7449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of y-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jin-Nyoung Ho
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.,Present address: Biomedical Research Institute, Department of Urology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Jong Kuk Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Eun Mi Kim
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
29
|
Ushakov VS, Tsidulko AY, de La Bourdonnaye G, Kazanskaya GM, Volkov AM, Kiselev RS, Kobozev VV, Kostromskaya DV, Gaytan AS, Krivoshapkin AL, Aidagulova SV, Grigorieva EV. Heparan Sulfate Biosynthetic System Is Inhibited in Human Glioma Due to EXT1/2 and HS6ST1/2 Down-Regulation. Int J Mol Sci 2017; 18:ijms18112301. [PMID: 29104277 PMCID: PMC5713271 DOI: 10.3390/ijms18112301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/14/2023] Open
Abstract
Heparan sulfate (HS) is an important component of the extracellular matrix and cell surface, which plays a key role in cell–cell and cell–matrix interactions. Functional activity of HS directly depends on its structure, which determined by a complex system of HS biosynthetic enzymes. During malignant transformation, the system can undergo significant changes, but for glioma, HS biosynthesis has not been studied in detail. In this study, we performed a comparative analysis of the HS biosynthetic system in human gliomas of different grades. RT-PCR analysis showed that the overall transcriptional activity of the main HS biosynthesis-involved genes (EXT1, EXT2, NDST1, NDST2, GLCE, HS2ST1, HS3ST1, HS3ST2, HS6ST1, HS6ST2, SULF1, SULF2, HPSE) was decreased by 1.5–2-fold in Grade II-III glioma (p < 0.01) and by 3-fold in Grade IV glioma (glioblastoma multiforme, GBM) (p < 0.05), as compared with the para-tumourous tissue. The inhibition was mainly due to the elongation (a decrease in EXT1/2 expression by 3–4-fold) and 6-O-sulfation steps (a decrease in 6OST1/2 expression by 2–5-fold) of the HS biosynthesis. Heparanase (HPSE) expression was identified in 50% of GBM tumours by immunostaining, and was characterised by a high intratumoural heterogeneity of the presence of the HPSE protein. The detected disorganisation of the HS biosynthetic system in gliomas might be a potential molecular mechanism for the changes of HS structure and content in tumour microenvironments, contributing to the invasion of glioma cells and the development of the disease.
Collapse
Affiliation(s)
- Victor S Ushakov
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | | | - Gabin de La Bourdonnaye
- Novosibirsk State University, Novosibirsk 630090, Russia.
- National Institute of Applied Sciences, 31400 Toulouse, France.
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
| | | | - Roman S Kiselev
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
- Novosibirsk State Medical University, 630090 Novosibirsk, Russia.
| | | | | | | | - Alexei L Krivoshapkin
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
- Novosibirsk State Medical University, 630090 Novosibirsk, Russia.
- European Medical Centre, 129110 Moscow, Russia.
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
30
|
Qiu P, Cui Y, Xiao H, Han Z, Ma H, Tang Y, Xu H, Zhang L. 5-Hydroxy polymethoxyflavones inhibit glycosaminoglycan biosynthesis in lung and colon cancer cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Kumagai S, Ishibashi K, Kataoka M, Oguro T, Kiko Y, Yanagida T, Aikawa K, Kojima Y. Impact of Sulfatase-2 on cancer progression and prognosis in patients with renal cell carcinoma. Cancer Sci 2017; 107:1632-1641. [PMID: 27589337 PMCID: PMC5132274 DOI: 10.1111/cas.13074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/27/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate‐specific endosulfatase‐2 (SULF‐2) can modulate the signaling of heparan sulfate proteoglycan‐binding proteins. The involvement of SULF‐2 in cancer growth varies by cancer type. The roles of SULF‐2 expression in the progression and prognosis of renal cell carcinomas (RCC) have not yet been fully clarified. In the present study, the expression levels of SULF‐2 mRNA and protein in 49 clinical RCC samples were determined by RT‐PCR and immunostaining. The existence of RCC with higher SULF‐2 expression and lower SULF‐2 expression compared to the adjacent normal kidney tissues was suggested. High SULF‐2 expression was correlated with an early clinical stage and less invasive pathological factors. Low SULF‐2 expression was correlated with an advanced stage and higher invasive factors. Three‐year cancer‐specific survival (CSS) for high SULF‐2 RCC and low SULF‐2 RCC were 100% and 71.4%, respectively (log‐rank P = 0.0019), with a significantly shorter CSS observed in low SULF‐2 RCC patients. The influence of SULF‐2 expression level on Wnt/VEGF/FGF signaling, cell viability and invasive properties was examined in three RCC cell lines, Caki‐2, ACHN and 786‐O, using a SULF‐2 suppression model involving siRNA or a SULF‐2 overexpression model involving a plasmid vector. High SULF‐2 expression enhanced Wnt signaling and Wnt‐induced cell viability, but not cell invasion. In contrast, low levels of SULF‐2 expression significantly enhanced both cell invasion and viability through the activation of VEGF/FGF pathways. RCC with lower SULF‐2 expression might have a higher potential for cell invasion and proliferation, leading to a poorer prognosis via the activation of VEGF and/or FGF signaling.
Collapse
Affiliation(s)
- Shin Kumagai
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Masao Kataoka
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Toshiki Oguro
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Yuichirou Kiko
- Department of Pathology, Fukushima Medical University, Fukushima, Japan
| | - Tomohiko Yanagida
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
32
|
Flowers SA, Zhou X, Wu J, Wang Y, Makambi K, Kallakury BV, Singer MS, Rosen SD, Davidson B, Goldman R. Expression of the extracellular sulfatase SULF2 is associated with squamous cell carcinoma of the head and neck. Oncotarget 2016; 7:43177-43187. [PMID: 27223083 PMCID: PMC5190016 DOI: 10.18632/oncotarget.9506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
Sulfatase 2 (SULF2), an extracellular sulfatase that alters sulfation on heparan sulfate proteoglycans, is involved in the tumorigenesis and progression of several carcinomas. SULF2 expression has not been evaluated in squamous cell carcinoma of the head and neck (HNSCC). Here we report results of IHC of SULF2 expression in HNSCC tissue. SULF2 was detected in 57% of tumors (n = 40) with a significant increase in intensity and number of stained cells compared to adjacent cancer-free tissue (p-value < 0.01), increasing with cancer stage when comparing stages 1 and 2 to stages 3 and 4 (p-value 0.01). SULF2 was not detected in epithelial cells of cancer-free controls, and expression was independent of patient demographics, tumor location and etiological factors, smoking and HPV infection by p16 IHC analysis. Sandwich ELISA was performed on serum of HNSCC patients (n = 28) and controls (n = 35), and although SULF2 was detectable, no change was observed in HNSCC. Saliva, collected by mouthwash, from HNSCC patients (n = 8) and controls (n = 8) was also tested by ELISA in a preliminary investigation and an increase in SULF2 was observed in HNSCC (p-value 0.041). Overall, this study shows that SULF2 is increased in HNSCC independent of tissue location (oral cavity, oropharynx, larynx and hypopharynx), patient demographics and etiology. Although no change in SULF2 was detected in HNSCC serum, its detection in saliva makes it worthy of further investigation as a potential HNSCC biomarker.
Collapse
Affiliation(s)
- Sarah A. Flowers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xin Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Jing Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yiwen Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar V. Kallakury
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mark S. Singer
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Steven D. Rosen
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, Medstar Georgetown University Hospital, Washington, DC 20057, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
33
|
Gill RM, Mehra V, Milford E, Dhoot GK. Short SULF1/SULF2 splice variants predominate in mammary tumours with a potential to facilitate receptor tyrosine kinase-mediated cell signalling. Histochem Cell Biol 2016; 146:431-44. [PMID: 27294358 DOI: 10.1007/s00418-016-1454-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 11/24/2022]
Abstract
The relative roles of SULF1 and SULF2 enzymes in tumour growth are controversial, but short SULF1/SULF2 splice variants predominate in human mammary tumours despite their non-detectable levels in normal mammary tissue. Compared with the normal, the level of receptor tyrosine kinase (RTK) activity was markedly increased in triple-positive mammary tumours during later stages of tumour progression showing increased p-EGFR, p-FGFR1 and p-cMet activity in triple-positive but not in triple-negative tumours. The abundance of catalytically inactive short SULF1/SULF2 variants permits high levels of HS sulphation and thus growth driving RTK cell signalling in primary mammary tumours. Also observed in this study, however, was increased N-sulphation detected by antibody 10E4 indicating that not only 6-O sulphation but also N-sulphation may contribute to increased RTK cell signalling in mammary tumours. The levels of such increases in not only SULF1/SULF2 but also in pEGFR, pFGFR1, p-cMet and Smad1/5/8 signalling were further enhanced following lymph node metastasis. The over-expression of Sulf1 and Sulf2 variants in mammary tumour-derived MDA-MB231 and MCF7 cell lines by transfection further confirms Sulf1-/Sulf2-mediated differential modulation of growth. The short variants of both Sulf1 and Sulf2 promoted FGF2-induced MDA-MB231 and MCF7 in vitro growth while full-length Sulf1 inhibited growth supporting in vivo mammary tumour cell signalling patterns of growth. Since a number of mammary tumours become drug resistant to hormonal therapy, Sulf1/Sulf2 inhibition could be an alternative therapeutic approach to target such tumours by down-regulating RTK-mediated cell signalling.
Collapse
Affiliation(s)
- Roop Ms Gill
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, NW1 OTU, UK
| | - Vedika Mehra
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, NW1 OTU, UK
| | - Emma Milford
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, NW1 OTU, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, NW1 OTU, UK.
| |
Collapse
|
34
|
Graham K, Murphy JI, Dhoot GK. SULF1/SULF2 reactivation during liver damage and tumour growth. Histochem Cell Biol 2016; 146:85-97. [PMID: 27013228 DOI: 10.1007/s00418-016-1425-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 12/29/2022]
Abstract
Both SULF1 and SULF2 enzymes are undetectable in normal adult liver tissue despite their high level expression during foetal development. Most hepatocellular carcinomas unlike the normal adult liver, however, express variable levels of these enzymes with a small proportion not expressing either SULF1 or SULF2. SULF1 expression, however, is not restricted to only foetal and tumour tissues but is also abundant in liver tissues undergoing injury-induced tissue regeneration as we observed during fatty liver degeneration, chronic hepatitis and cirrhosis. Unlike SULF1, the level of SULF2 activation during injury-induced regeneration, however, is much lower when compared to foetal or tumour growth. Although a small fraction of liver tumours and some liver tumour cell lines can grow in the absence of Sulf1 and/or Sulf2, the in vitro overexpression of these genes further confirms their growth-promoting effect while transient reduction in their levels by neutralisation antibodies reduces growth. Hedgehog signalling appeared to regulate the growth of both Hep3B and PRF5 cell lines since cyclopamine demonstrated a marked inhibitory effect while sonic hedgehog (SHH) overexpression promoted growth. All Sulf isoforms promoted SHH-induced growth although the level of increase in PRF5 cell line was higher with both Sulf2 variants than Sulf1. In addition to promoting growth, the Sulf variants, particularly the shorter Sulf2 variant, markedly promoted PRF5 cell migration in a scratch assay. The SULF1/SULF2 activation thus does not only promote regulated foetal growth and injury-induced liver regeneration but also dysregulated tumour growth.
Collapse
Affiliation(s)
- Kurtis Graham
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Joshua I Murphy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
35
|
Al-Gayyar MM, Abbas A, Hamdan AM. Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocelluar carcinoma. Biol Chem 2016; 397:257-67. [DOI: 10.1515/hsz-2015-0265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
Abstract
Abstract
Sulfatase 2 (SULF2) is an extracellular enzyme that catalyzes the removal of 6-O-sulfate groups from the heparan sulfate (HS). As elevated SULF2 activity has been correlated with hepatocellular carcinoma (HCC), this study was conducted to evaluate the chemoprotective and the hepatoprotective roles of adiponectin, as a SULF2 inhibitor, against hepatocellular carcinoma both in vivo and in vitro. HCC was induced in rats using thioacetamide (200 mg/kg). Treated rats received adiponectin (5 μg/kg) once a week. Moreover, human hepatocellular carcinoma (HepG2) cell line was used as an in-vitro model. In both in-vivo and in-vitro models, adiponectin completely blocked HCC-induced SULF2 elevation. The antitumor activity of adiponectin was confirmed by 80% increased the survival rate, 73% reduction in the average number of nodules per nodule-bearing liver and 46% reduction in serum AFP. In addition, adiponectin ameliorated HCC-induced expression of tumor invasion markers, MMP9, syndecan-1 and FGF-2. Moreover, adiponectin attenuated HCC-induced elevation of nfκb and TNF-α levels. Moreover, treatment of HepG2 cell line with adiponectin showed dose-dependent reduction of HepG2 cell viability and elevation of cellular cytotoxicity. Besides, Adiponectin yielded the same results in HepG2 cells in a dose-dependent manner. Adiponectin achieved both hepatoprotective and chemoprotective effects against HCC through blocking of SULF2.
Collapse
|
36
|
Lui NS, Yang YW, van Zante A, Buchanan P, Jablons DM, Lemjabbar-Alaoui H. SULF2 Expression Is a Potential Diagnostic and Prognostic Marker in Lung Cancer. PLoS One 2016; 11:e0148911. [PMID: 26882224 PMCID: PMC4755530 DOI: 10.1371/journal.pone.0148911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023] Open
Abstract
AIMS Lung cancer is one of the most deadly cancers; median survival from diagnosis is less than one year in those with advanced disease. Novel lung cancer biomarkers are desperately needed. In this study, we evaluated SULF2 expression by immunohistochemistry and its association with overall survival in a cohort of patients with non-small cell lung cancer (NSCLC). We also looked for the presence of SULF2 protein in plasma to evaluate its potential as an early detection biomarker for NSCLC. METHODS We identified patients who underwent surgical resection for pulmonary adenocarcinoma or squamous cell carcinoma at our institution. A section from each paraffin-embedded specimen was stained with a SULF2 antibody. A pathologist determined the percentage and intensity of tumor cell staining. Survival analysis was performed using a multivariate Cox proportional hazards model. Using a novel SULF2 ELISA assay, we analyzed plasma levels of SULF2 in a small cohort of healthy donors and patients with early stage NSCLC. RESULTS SULF2 staining was present in 82% of the lung cancer samples. Squamous cell carcinomas had a higher mean percentage of staining than adenocarcinomas (100% vs. 60%; p<0.0005). After adjusting for age, sex, race, histologic type, stage, and neoadjuvant therapy, there was a non-significant (31%; p = 0.65) increase in the risk of death for patients with adenocarcinoma with SULF2 staining in tumor cells. In contrast, there was a significant decrease in the risk of death (89%; p = 0.02) for patients with squamous cell carcinoma with SULF2 staining in tumor cells. SULF2 protein was present in plasma of patients with early stage NSCLC, and soluble SULF2 levels increased with age. Finally, plasma SULF2 levels were significantly elevated in early stage NSCLC patients, compared to healthy controls. CONCLUSIONS Tumor expression of SULF2 may affect prognosis in NSCLC, while blood SULF2 levels may have a significant role in the diagnosis of this fatal disease.
Collapse
Affiliation(s)
- Natalie S. Lui
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Yi-Wei Yang
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Annemieke van Zante
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Petra Buchanan
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - David M. Jablons
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Hassan Lemjabbar-Alaoui
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Shire A, Lomberk G, Lai JP, Zou H, Tsuchiya N, Aderca I, Moser CD, Gulaid KH, Oseini A, Hu C, Warsame O, Jenkins RB, Roberts LR. Restoration of epigenetically silenced SULF1 expression by 5-aza-2-deoxycytidine sensitizes hepatocellular carcinoma cells to chemotherapy-induced apoptosis. ACTA ACUST UNITED AC 2015; 3:1-18. [PMID: 26236329 PMCID: PMC4520440 DOI: 10.1159/000375461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second most frequent cause of cancer death worldwide. Sulfatase 1 (SULF1) functions as a tumor suppressor in HCC cell lines in vitro but also has an oncogenic effect in some HCCs in vivo. Aim The purpose of this study was to examine the mechanisms regulating SULF1 and its function in HCC. Methods First, SULF1 mRNA and protein expression were examined. Second, we examined SULF1 gene copy numbers in HCC cells. Third, we assessed whether DNA methylation or methylation and/or acetylation of histone marks on the promoter regulate SULF1 expression. Finally, we examined the effect of 5-aza-2′-deoxycytidine (5-Aza-dC) on sulfatase activity and drug-induced apoptosis. Results SULF1 mRNA was downregulated in nine of eleven HCC cell lines, but only in six of ten primary tumors. SULF1 mRNA correlated with protein expression. Gene copy number assessment by fluorescence in situ hybridization showed intact SULF1 alleles in low-SULF1-expressing cell lines. CpG island methylation in the SULF1 promoter and two downstream CpG islands did not show an inverse correlation between DNA methylation and SULF1 expression. However, chromatin immunoprecipitation showed that the SULF1 promoter acquires a silenced chromatin state in low-SULF1-expressing cells through an increase in di/trimethyl-K9H3 and trimethyl-K27H3 and a concomitant loss of activating acetyl K9, K14H3 marks. 5-Aza-dC restored SULF1 mRNA expression in SULF1-negative cell lines, with an associated increase in sulfatase activity and sensitization of HCC cells to cisplatin-induced apoptosis. Conclusion SULF1 gene silencing in HCC occurs through histone modifications on the SULF1 promoter. Restoration of SULF1 mRNA expression by 5-Aza-dC sensitized HCC cells to drug-induced apoptosis.
Collapse
Affiliation(s)
- Abdirashid Shire
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Jin-Ping Lai
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Hongzhi Zou
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Norihiko Tsuchiya
- Department of Urology, Akita University School of Medicine, Akita 010-8543 Japan
| | - Ileana Aderca
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Kadra H Gulaid
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Abdul Oseini
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Omar Warsame
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Robert B Jenkins
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| |
Collapse
|
38
|
Suhovskih AV, Aidagulova SV, Kashuba VI, Grigorieva EV. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 2015; 361:833-44. [PMID: 25715761 DOI: 10.1007/s00441-015-2141-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/28/2015] [Indexed: 12/18/2022]
Abstract
Glycosylation changes occur widely in colon tumours, suggesting glycosylated molecules as potential biomarkers for colon cancer diagnostics. In this study, proteoglycans (PGs) expression levels and their transcriptional patterns are investigated in human colon tumours in vivo and carcinoma cells in vitro. According to RT-PCR analysis, normal and cancer colon tissues expressed a specific set of PGs (syndecan-1, perlecan, decorin, biglycan, versican, NG2/CSPG4, serglycin, lumican, CD44), while the expression of glypican-1, brevican and aggrecan was almost undetectable. Overall transcriptional activity of the PGs in normal and cancer tissues was similar, although expression patterns were different. Expression of decorin and perlecan was down-regulated 2-fold in colon tumours, while biglycan and versican expression was significantly up-regulated (6-fold and 3-fold, respectively). Expression of collagen1A1 was also increased 6-fold in colon tumours. However, conventional HCT-116 colon carcinoma and AG2 colon cancer-initiating cells did not express biglycan and decorin and were versican-positive and -negative, respectively, demonstrating an extracellular origin of the PGs in cancer tissue. Selective expression of heparan sulfate (HS) proteoglycans syndecan-1 and perlecan in the AG2 colon cancer-initiating cell line suggests these PGs as potential biomarkers for cancer stem cells. Overall transcriptional activity of the HS biosynthetic system was similar in normal and cancer tissues, although significant up-regulation of extracellular sulfatases SULF1/2 argues for a possible distortion of HS sulfation patterns in colon tumours. Taken together, the obtained results suggest versican, biglycan, collagen1A1 and SULF1/2 expression as potential microenvironmental biomarkers and/or targets for colon cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics SB RAMS, Timakova str 2, Novosibirsk, 630117, Russia
| | | | | | | |
Collapse
|
39
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
40
|
Fichtner S, Hose D, Engelhardt M, Meißner T, Neuber B, Krasniqi F, Raab M, Schönland S, Ho AD, Goldschmidt H, Hundemer M. Association of Antigen-Specific T-cell Responses with Antigen Expression and Immunoparalysis in Multiple Myeloma. Clin Cancer Res 2015; 21:1712-21. [DOI: 10.1158/1078-0432.ccr-14-1618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
|
41
|
Meier JC, Haendler B, Seidel H, Groth P, Adams R, Ziegelbauer K, Kreft B, Beckmann G, Sommer A, Kopitz C. Knockdown of platinum-induced growth differentiation factor 15 abrogates p27-mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis. Cancer Med 2014; 4:253-67. [PMID: 25490861 PMCID: PMC4329009 DOI: 10.1002/cam4.354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022] Open
Abstract
Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Julia C Meier
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany; Free University of Berlin, Institute for Biology, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vicente CM, Lima MA, Yates EA, Nader HB, Toma L. Enhanced tumorigenic potential of colorectal cancer cells by extracellular sulfatases. Mol Cancer Res 2014; 13:510-23. [PMID: 25477293 DOI: 10.1158/1541-7786.mcr-14-0372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Heparan sulfate endosulfatase-1 and -2 (SULF1 and SULF2) are two important extracellular 6-O-endosulfatases that remove 6-O sulfate groups of N-glucosamine along heparan sulfate (HS) proteoglycan chains often found in the extracellular matrix. The HS sulfation pattern influences signaling events at the cell surface, which are critical for interactions with growth factors and their receptors. SULFs are overexpressed in several types of human tumors, but their role in cancer is still unclear because their molecular mechanism has not been fully explored and understood. To further investigate the functions of these sulfatases in tumorigenesis, stable overexpression models of these genes were generated in the colorectal cancer cells, Caco-2 and HCT-116. Importantly, mimicking overexpression of these sulfatases resulted in increased viability and proliferation, and augmented cell migration. These effects were reverted by shRNA-mediated knockdown of SULF1 or SULF2 and by the addition of unfractionated heparin. Detailed structural analysis of HS from cells overexpressing SULFs showed reduction in the trisulfated disaccharide UA(2S)-GlcNS(6S) and corresponding increase in UA(2S)-GlcNS disaccharide, as well as an unexpected rise in less common disaccharides containing GlcNAc(6S) residues. Moreover, cancer cells transfected with SULFs demonstrated increased Wnt signaling. In summary, SULF1 or SULF2 overexpression contributes to colorectal cancer cell proliferation, migration, and invasion. IMPLICATIONS This study reveals that sulfatases have oncogenic effects in colon cancer cells, suggesting an important role for these enzymes in cancer progression.
Collapse
Affiliation(s)
- Carolina M Vicente
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Marcelo A Lima
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil. Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edwin A Yates
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil. Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helena B Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Leny Toma
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
43
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|
44
|
Gill RMS, Michael A, Westley L, Kocher HM, Murphy JI, Dhoot GK. SULF1/SULF2 splice variants differentially regulate pancreatic tumour growth progression. Exp Cell Res 2014; 324:157-71. [PMID: 24726914 DOI: 10.1016/j.yexcr.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
This study highlights the highly dynamic nature of SULF1/SULF2 splice variants in different human pancreatic cancers that regulate the activities of multiple cell signalling pathways in development and disease. Most pancreatic tumours expressed variable levels of both SULF1 and SULF2 variants including some expression during inflammation and pancreatitis. Many ductal and centro-acinar cell-derived pancreatic tumours are known to evolve into lethal pancreatic ductal adenocarcinomas but the present study also detected different stages of such tumour progression in the same tissue biopsies of not only acinar cell origin but also islet cell-derived cancers. The examination of caerulein-induced pancreatic injury and tumorigenesis in a Kras-driven mouse model confirmed the activation and gradual increase of SULF1/SULF2 variants during pancreatitis and tumorigenesis but with reduced levels in Stat3 conditional knockout mice with reduced inflammation. The significance of differential spatial and temporal patterns of specific SULF1/SULF2 splice variant expression during cancer growth became further apparent from their differential stimulatory or inhibitory effects on growth factor activities, tumour growth and angiogenesis not only during in vitro but also in vivo growth thus providing possible novel therapeutic targets.
Collapse
Affiliation(s)
- Roop M S Gill
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Andreas Michael
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Leah Westley
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1M 6BQ, UK
| | - Joshua I Murphy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.
| |
Collapse
|
45
|
Shang B, Gao A, Pan Y, Zhang G, Tu J, Zhou Y, Yang P, Cao Z, Wei Q, Ding Y, Zhang J, Zhao Y, Zhou Q. CT45A1 acts as a new proto-oncogene to trigger tumorigenesis and cancer metastasis. Cell Death Dis 2014; 5:e1285. [PMID: 24901056 PMCID: PMC4611718 DOI: 10.1038/cddis.2014.244] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Cancer/testis antigen (CTA)-45 family (CT45) belongs to a new family of genes in phylogenetics and is absent in normal tissues except for testis, but is aberrantly overexpressed in various cancer types. Whether CT45 and other CTAs act as proto-oncogenes has not been determined. Using breast cancer as a model, we found that CT45A1, a representative CT45 family member, alone had a weak tumorigenic effect. However, its neoplastic potency was greatly enhanced in the presence of growth factors. Overexpression of CT45A1 in breast cancer cells markedly upregulated various oncogenic and metastatic genes, constitutively activated ERK and CREB signaling pathways, promoted epithelial-mesenchymal transition, and increased cell stemness, tumorigenesis, invasion, and metastasis, whereas silencing CT45A1 significantly reduced cancer cell migration and invasion. We propose that CT45A1 functions as a novel proto-oncogene to trigger oncogenesis and metastasis. CT45A1 and other CT45 members are therefore excellent targets for anticancer drug discovery and targeted tumor therapy, and valuable genes in the study of a molecular phylogenetic tree.
Collapse
Affiliation(s)
- B Shang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - A Gao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Pan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - G Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Tu
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - P Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Z Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Ding
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Nikitovic D, Mytilinaiou M, Berdiaki A, Karamanos NK, Tzanakakis GN. Heparan sulfate proteoglycans and heparin regulate melanoma cell functions. Biochim Biophys Acta Gen Subj 2014; 1840:2471-81. [PMID: 24486410 DOI: 10.1016/j.bbagen.2014.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The solid melanoma tumor consists of transformed melanoma cells, and the associated stromal cells including fibroblasts, endothelial cells, immune cells, as well as, soluble macro- and micro-molecules of the extracellular matrix (ECM) forming the complex network of the tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are an important component of the melanoma tumor ECM. Importantly, there appears to be both a quantitative and a qualitative shift in the content of HSPGs, in parallel to the nevi-radial growth phase-vertical growth phase melanoma progression. Moreover, these changes in HSPG expression are correlated to modulations of key melanoma cell functions. SCOPE OF REVIEW This review will critically discuss the roles of HSPGs/heparin in melanoma development and progression. MAJOR CONCLUSIONS We have correlated HSPGs' expression and distribution with melanoma cell signaling and functions as well as angiogenesis. GENERAL SIGNIFICANCE The current knowledge of HSPGs/heparin biology in melanoma provides a foundation we can utilize in the ongoing search for new approaches in designing anti-tumor therapy. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- D Nikitovic
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - M Mytilinaiou
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Ai Berdiaki
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - N K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - G N Tzanakakis
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece.
| |
Collapse
|
47
|
Vivès RR, Seffouh A, Lortat-Jacob H. Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer. Front Oncol 2014; 3:331. [PMID: 24459635 PMCID: PMC3890690 DOI: 10.3389/fonc.2013.00331] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate (HS) is a complex polysaccharide that takes part in most major cellular processes, through its ability to bind and modulate a very large array of proteins. These interactions involve saccharide domains of specific sulfation pattern (S-domains), the assembly of which is tightly orchestrated by a highly regulated biosynthesis machinery. Another level of structural control does also take place at the cell surface, where degrading enzymes further modify HS post-synthetically. Amongst them are the Sulfs, a family of extracellular sulfatases (two isoforms in human) that catalyze the specific 6-O-desulfation of HS. By targeting HS functional sulfated domains, Sulfs dramatically alter its ligand binding properties, thereby modulating a broad range of signaling pathways. Consequently, Sulfs play major roles during development, as well as in tissue homeostasis and repair. Sulfs have also been associated with many pathologies including cancer, but despite increasing interest, the role of Sulfs in tumor development still remains unclear. Studies have been hindered by a poor understanding of the Sulf enzymatic activities and conflicting data have shown either anti-oncogenic or tumor-promoting effects of these enzymes, depending on the tumor models analyzed. These opposite effects clearly illustrate the fine tuning of HS functions by the Sulfs, and the need to clarify the mechanisms involved. In this review, we will detail the present knowledge on the structural and functional properties of the Sulfs, with a special focus on their implication during tumor progression. Finally, we will discuss attempts and perspectives of using the Sulfs as a biomarker of cancer prognosis and diagnostic and as a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Romain R Vivès
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Amal Seffouh
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Hugues Lortat-Jacob
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| |
Collapse
|
48
|
The glycome of normal and malignant plasma cells. PLoS One 2013; 8:e83719. [PMID: 24386263 PMCID: PMC3873332 DOI: 10.1371/journal.pone.0083719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 02/01/2023] Open
Abstract
The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10) and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i) malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii) be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii) Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14), t(4;14), hyperdiploidy, 1q21-gain and deletion of 13q14. iv) A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v) As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma.
Collapse
|
49
|
Szatmári T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 2013; 3:310. [PMID: 24392351 PMCID: PMC3867677 DOI: 10.3389/fonc.2013.00310] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signaling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell-surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes, and signaling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in regulation of cell growth.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
50
|
Heparan sulfate and heparanase as modulators of breast cancer progression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:852093. [PMID: 23984412 PMCID: PMC3747466 DOI: 10.1155/2013/852093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/04/2013] [Indexed: 12/16/2022]
Abstract
Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients' survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.
Collapse
|