1
|
Bartos JA, Grunau B, Carlson C, Duval S, Ripeckyj A, Kalra R, Raveendran G, John R, Conterato M, Frascone RJ, Trembley A, Aufderheide TP, Yannopoulos D. Improved Survival With Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated With Prolonged Resuscitation. Circulation 2020; 141:877-886. [PMID: 31896278 PMCID: PMC7069385 DOI: 10.1161/circulationaha.119.042173] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The likelihood of neurologically favorable survival declines with prolonged resuscitation. However, the ability of extracorporeal cardiopulmonary resuscitation (ECPR) to modulate this decline is unknown. Our aim was to examine the effects of resuscitation duration on survival and metabolic profile in patients who undergo ECPR for refractory ventricular fibrillation/ventricular tachycardia out-of-hospital cardiac arrest.
Collapse
Affiliation(s)
- Jason A Bartos
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis.,Center for Resuscitation Medicine (J.A.B., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Brian Grunau
- Department of Emergency Medicine, University of British Columbia, Vancouver, Canada (B.G.)
| | - Claire Carlson
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Sue Duval
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Adrian Ripeckyj
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Rajat Kalra
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Ganesh Raveendran
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis
| | - Ranjit John
- Division of Cardiothoracic Surgery (R.J.), University of Minnesota School of Medicine, Minneapolis
| | - Marc Conterato
- Department of Emergency Medicine, North Memorial Medical Center, Robbinsdale, MN (M.C., A.T.)
| | - Ralph J Frascone
- Department of Emergency Medicine, Regions Hospital, St Paul, MN (R.J.F.)
| | - Alexander Trembley
- Department of Emergency Medicine, North Memorial Medical Center, Robbinsdale, MN (M.C., A.T.)
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee (T.P.A.)
| | - Demetris Yannopoulos
- Division of Cardiology, Department of Medicine (J.A.B., C.C., S.D., A.R., R.K., G.R., D.Y.), University of Minnesota School of Medicine, Minneapolis.,Center for Resuscitation Medicine (J.A.B., D.Y.), University of Minnesota School of Medicine, Minneapolis
| |
Collapse
|
2
|
Kern KB, Hanna JM, Young HN, Ellingson CJ, White JJ, Heller B, Illindala U, Hsu CH, Zuercher M. Importance of Both Early Reperfusion and Therapeutic Hypothermia in Limiting Myocardial Infarct Size Post–Cardiac Arrest in a Porcine Model. JACC Cardiovasc Interv 2016; 9:2403-2412. [DOI: 10.1016/j.jcin.2016.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
|
3
|
Pedrizzetti G, Martiniello AR, Bianchi V, D'Onofrio A, Caso P, Tonti G. Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry. Eur Heart J Cardiovasc Imaging 2016; 17:203-9. [PMID: 26060201 PMCID: PMC4882880 DOI: 10.1093/ehjci/jev137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS Changes in electrical activation sequence are known to affect the timing of cardiac mechanical events. We aim to demonstrate that these also modify global properties of the intraventricular blood flow pattern. We also explore whether such global changes present a relationship with clinical outcome. METHODS AND RESULTS We investigated 30 heart failure patients followed up after cardiac resynchronization therapy (CRT). All subjects underwent echocardiography before implant and at follow-up after 6+ months. Left ventricular mechanics was investigated at follow-up during active CRT and was repeated after a temporary interruption <5 min later. Strain analysis, performed by speckle tracking, was used to assess the entity of contraction (global longitudinal strain) and its synchronicity (standard deviation of time to peak of radial strain). Intraventricular fluid dynamics, by echographic particle image velocimetry, was used to evaluate the directional distribution of global momentum associated with blood motion. The discontinuation of CRT pacing reflects into a reduction of deformation synchrony and into the deviation of blood flow momentum from the base-apex orientation with the development of transversal flow-mediated haemodynamic forces. The deviation of flow momentum presents a significant correlation with the degree of volumetric reduction after CRT. CONCLUSION Changes in electrical activation alter the orientation of blood flow momentum. The long-term CRT outcome correlates with the degree of re-alignment of haemodynamic forces. These preliminary results suggest that flow orientation could be used for optimizing the biventricular pacing setting. However, larger prospective studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, P.le Europa 1., Trieste 34127, Italy
| | | | - Valter Bianchi
- Department of Cardiology, Monaldi Hospital, AORN Ospedali dei Colli, Napoli, Italy
| | - Antonio D'Onofrio
- Department of Cardiology, Monaldi Hospital, AORN Ospedali dei Colli, Napoli, Italy
| | - Pio Caso
- Department of Cardiology, Monaldi Hospital, AORN Ospedali dei Colli, Napoli, Italy
| | - Giovanni Tonti
- Cardiology Division, 'G. d'Annunzio' University, Chieti, Italy
| |
Collapse
|
4
|
Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 2013; 28:316-26. [PMID: 24076965 DOI: 10.1096/fj.12-226225] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial fission, regulated by dynamin-related protein-1 (Drp1), is a newly recognized determinant of mitochondrial function, but its contribution to left ventricular (LV) impairment following ischemia-reperfusion (IR) injury is unknown. We report that Drp1 activation during IR results in LV dysfunction and that Drp1 inhibition is beneficial. In both isolated neonatal murine cardiomyocytes and adult rat hearts (Langendorff preparation) mitochondrial fragmentation and swelling occurred within 30 min of IR. Drp1-S637 (serine 637) dephosphorylation resulted in Drp1 mitochondrial translocation and increased mitochondrial fission. The Drp1 inhibitor Mdivi-1 preserved mitochondrial morphology, reduced cytosolic calcium, and prevented cell death. Drp1 siRNA similarly preserved mitochondrial morphology. In Langendorff hearts, Mdivi-1 reduced mitochondrial reactive oxygen species, improved LV developed pressure (92±5 vs. 28±10 mmHg, P<0.001), and lowered LV end diastolic pressure (10±1 vs. 86±13 mmHg, P<0.001) following IR. Mdivi-1 was protective if administered prior to or following ischemia. Because Drp1-S637 dephosphorylation is calcineurin sensitive, we assessed the effects of a calcineurin inhibitor, FK506. FK506 treatment prior to IR prevented Drp1-S637 dephosphorylation and preserved cardiac function. Likewise, therapeutic hypothermia (30°C) inhibited Drp1-S637 dephosphorylation and preserved mitochondrial morphology and myocardial function. Drp1 inhibition is a novel strategy to improve myocardial function following IR.
Collapse
Affiliation(s)
- Willard W Sharp
- 1Section of Emergency Medicine, Department of Medicine, 5841 S. Maryland Ave., MC 5068, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pennell DJ, Baksi AJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2012. J Cardiovasc Magn Reson 2013; 15:76. [PMID: 24006874 PMCID: PMC3847143 DOI: 10.1186/1532-429x-15-76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023] Open
Abstract
There were 90 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2012, which is an 8% increase in the number of articles since 2011. The quality of the submissions continues to increase. The editors are delighted to report that the 2011 JCMR Impact Factor (which is published in June 2012) has risen to 4.44, up from 3.72 for 2010 (as published in June 2011), a 20% increase. The 2011 impact factor means that the JCMR papers that were published in 2009 and 2010 were cited on average 4.44 times in 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - A John Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - John Paul Carpenter
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - David N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Philip J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Raad H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Sanjay K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| |
Collapse
|
6
|
Pennell DJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2011. J Cardiovasc Magn Reson 2012; 14:78. [PMID: 23158097 PMCID: PMC3519784 DOI: 10.1186/1532-429x-14-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022] Open
Abstract
There were 83 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2011, which is an 11% increase in the number of articles since 2010. The quality of the submissions continues to increase. The editors had been delighted with the 2010 JCMR Impact Factor of 4.33, although this fell modestly to 3.72 for 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, we remain very pleased with the progress of the journal's impact over the last 5 years. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors feel it is useful to summarize the papers for the readership into broad areas of interest or theme, which we feel would be useful, so that areas of interest from the previous year can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - John Paul Carpenter
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Schwarzl M, Huber S, Maechler H, Steendijk P, Seiler S, Truschnig-Wilders M, Nestelberger T, Pieske BM, Post H. Left ventricular diastolic dysfunction during acute myocardial infarction: effect of mild hypothermia. Resuscitation 2012; 83:1503-10. [PMID: 22634434 PMCID: PMC3500695 DOI: 10.1016/j.resuscitation.2012.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/04/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022]
Abstract
Background Mild hypothermia (MH) decreases infarct size and mortality in experimental reperfused myocardial infarction, but may potentiate ischaemia-induced left ventricular (LV) diastolic dysfunction. Methods In anaesthetized pigs (70 ± 2 kg), polystyrol microspheres (45 μm) were infused repeatedly into the left circumflex artery until cardiac power output decreased >40%. Then, pigs were assigned to normothermia (NT, 38.0 °C, n = 8) or MH (33.0 °C, n = 8, intravascular cooling) and followed for 6 h (CME 6 h). *p < 0.05 vs baseline, †p < 0.05 vs NT. Results In NT, cardiac output (CO) decreased from 6.2 ± 0.3 to 3.4 ± 0.2* l/min, and heart rate increased from 89 ± 4 to 101 ± 6* bpm. LV end-diastolic volume fell from 139 ± 8 to 64 ± 4 ml*, while LV ejection fraction remained constant (49 ± 1 vs 53 ± 4%). The corresponding end-diastolic pressure–volume relationship was progressively shifted leftwards, reflecting severe LV diastolic dysfunction. In MH, CO fell to a similar degree. Spontaneous bradycardia compensated for slowed LV relaxation, and the leftward shift of the end-diastolic pressure–volume relationship was less pronounced during MH. MH increased systemic vascular resistance, such that mean aortic pressure remained higher in MH vs NT (69 ± 2† vs 54 ± 4 mmHg). Mixed venous oxygen saturation at CME 6 h was higher in MH than in NT (59 ± 4† vs 42 ± 2%) due to lowered systemic oxygen demand during cooling. Conclusion We conclude that (i) an acute loss of end-diastolic LV compliance is a major component of acute cardiac pump failure during experimental myocardial infarction, and that (ii) MH does not potentiate this diastolic LV failure, but stabilizes haemodynamics and improves systemic oxygen supply/demand imbalance by reducing demand.
Collapse
Affiliation(s)
- Michael Schwarzl
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kumar S, Ewy GA. The hospital's role in improving survival of patients with out-of-hospital cardiac arrest. Clin Cardiol 2012; 35:462-6. [PMID: 22549822 DOI: 10.1002/clc.21992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/05/2012] [Indexed: 01/22/2023] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) is a major public health problem. Unfortunately, in spite of recurring updated guidelines, survival of patients with OHCA had been unchanged for decades. Recently, new approaches to patients with OHCA during the community and prehospital phases of therapy for cardiac arrest have resulted in a dramatic improvement in survival. Further improvement in survival has resulted from hospitals designated as Cardiac Receiving Centers. These centers are committed to the treatment of post-cardiac arrest syndrome by providing 24/7 therapeutic mild hypothermia, urgent cardiac catheterization and percutaneous coronary intervention, evidence-based termination of resuscitation protocols that limit premature withdrawal of care, protocol to address organ donation, commitment of cardiocerebral resuscitation training in their community, and a commitment and proven ability of data collection to assure that instituted changes result in improved survival. This newer aspect of hospital practice is an aspect that needs to be embraced by either becoming a Cardiac Receiving Center or partnering with other hospitals that can provide this critically important service.
Collapse
Affiliation(s)
- Sachin Kumar
- Cardiology and University of Arizona Sarver Heart Center Tucson, Arizona, USA
| | | |
Collapse
|
9
|
Kern KB. Importance of invasive interventional strategies in resuscitated patients following sudden cardiac arrest. Interv Cardiol 2011. [DOI: 10.2217/ica.11.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|