1
|
Rajakulasingam R, Ferreira PF, Scott AD, Khalique Z, Azzu A, Molto M, Conway M, Falaschetti E, Cheng K, Hammersley DJ, Cantor EJ, Tindale A, Beattie CJ, Banerjee A, Wage R, Soundarajan RK, Dalby M, Nielles-Vallespin S, Pennell DJ, de Silva R. Characterization of dynamic changes in cardiac microstructure after reperfused ST-elevation myocardial infarction by biphasic diffusion tensor cardiovascular magnetic resonance. Eur Heart J 2025; 46:454-469. [PMID: 39405409 DOI: 10.1093/eurheartj/ehae667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND AIMS Microstructural disturbances underlie dysfunctional contraction and adverse left ventricular (LV) remodelling after ST-elevation myocardial infarction (STEMI). Biphasic diffusion tensor cardiovascular magnetic resonance (DT-CMR) quantifies dynamic reorientation of sheetlets (E2A) from diastole to systole during myocardial thickening, and markers of tissue integrity [mean diffusivity (MD) and fractional anisotropy (FA)]. This study investigated whether microstructural alterations identified by biphasic DT-CMR: (i) enable contrast-free detection of acute myocardial infarction (MI); (ii) associate with severity of myocardial injury and contractile dysfunction; and (iii) predict adverse LV remodelling. METHODS Biphasic DT-CMR was acquired 4 days (n = 70) and 4 months (n = 66) after reperfused STEMI and in healthy volunteers (HVOLs) (n = 22). Adverse LV remodelling was defined as an increase in LV end-diastolic volume ≥ 20% at 4 months. MD and FA maps were compared with late gadolinium enhancement images. RESULTS Widespread microstructural disturbances were detected post-STEMI. In the acute MI zone, diastolic E2A was raised and systolic E2A reduced, resulting in reduced E2A mobility (all P < .001 vs. adjacent and remote zones and HVOLs). Acute global E2A mobility was the only independent predictor of adverse LV remodelling (odds ratio .77; 95% confidence interval .63-.94; P = .010). MD and FA maps had excellent sensitivity and specificity (all > 90%) and interobserver agreement for detecting MI presence and location. CONCLUSIONS Biphasic DT-CMR identifies microstructural alterations in both diastole and systole after STEMI, enabling detection of MI presence and location as well as predicting adverse LV remodelling. DT-CMR has potential to provide a single contrast-free modality for MI detection and prognostication of patients after acute STEMI.
Collapse
Affiliation(s)
- Ramyah Rajakulasingam
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Zohya Khalique
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alessia Azzu
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Maria Molto
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miriam Conway
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | | | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Daniel J Hammersley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
- King's College Hospital NHS Foundation Trust, UK
| | - Emily-Jane Cantor
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alexander Tindale
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Catherine J Beattie
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Arjun Banerjee
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ricardo Wage
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Raj K Soundarajan
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miles Dalby
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| |
Collapse
|
2
|
Chen R, Luo R, Xu Y, Ou J, Li X, Yang Y, Cao L, Wu Z, Luo W, Liu H. Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding. J Magn Reson Imaging 2025; 61:305-318. [PMID: 38587265 DOI: 10.1002/jmri.29383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE Prospective. POPULATION Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated using aSNR = Mean intensity myocardium / Standard deviation myocardium , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ruohong Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Wei Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Sciacchitano S, Napoli A, Rocco M, De Vitis C, Mancini R. Myxedema in Both Hyperthyroidism and Hypothyroidism: A Hormetic Response? Int J Mol Sci 2024; 25:9957. [PMID: 39337448 PMCID: PMC11431941 DOI: 10.3390/ijms25189957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Myxedema is a potentially life-threatening condition typically observed in severe hypothyroidism. However, localized or diffuse myxedema is also observed in hyperthyroidism. The exact cause and mechanism of this paradoxical situation is not clear. We report here the analysis of body fluid distribution by bioelectrical impedance analysis (BIA) in 103 thyroid patients, subdivided according to their functional status. All BIA parameters measured in subclinical thyroid dysfunctions did not significantly differ from those observed in euthyroid controls. On the contrary, they were clearly altered in the two extreme, opposite conditions of thyroid dysfunctions, namely overt hyperthyroidism and severe hypothyroidism, indicating the occurrence of a typical hormetic condition. Surprisingly, differences in BIA parameters related to fluid body composition were even more evident in hyperthyroidism than in hypothyroidism. A hormetic response to thyroid hormone (TH)s was previously reported to explain the paradoxical, biphasic, time- and dose-dependent effects on other conditions. Our results indicate that myxedema, observed in both hypothyroid and hyperthyroid conditions, represents another example of a hormetic-type response to THs. BIA offers no additional valuable information in evaluating fluid body composition in subclinical thyroid dysfunctions, but it represents a valuable method to analyze and monitor body fluid composition and distribution in overt and severe thyroid dysfunctions.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Life Sciences, Health and Health Professions, Link Campus University, Via del Casale di San Pio V, 00165 Rome, Italy
| | - Angela Napoli
- Departmental Faculty of Medicine, Unicamillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Monica Rocco
- Department of Clinical and Surgical Translational Medicine, Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
4
|
Sillanmäki S, Hartikainen S, Ylä-Herttuala E. Review of Myocardial Ischemia, Scar, and Viability Estimation with Molecular Magnetic Resonance Imaging. Biomedicines 2024; 12:1681. [PMID: 39200146 PMCID: PMC11351116 DOI: 10.3390/biomedicines12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases, particularly myocardial ischemia from coronary artery obstruction, remain a leading cause of global morbidity. This review explores cardiac molecular magnetic resonance imaging (mMRI) and other molecular imaging techniques for the evaluation of myocardial ischemia, scarring, and viability. RESULTS AND FINDINGS mMRI imaging methods provide detailed information on myocardial ischemia, edema, and scar tissue using techniques like cine imaging, T1 and T2 mapping, and gadolinium-based contrast agents. These methods enable the precise assessment of the myocardial tissue properties, crucial in diagnosing and treating cardiovascular diseases. Advanced techniques, such as the T1ρ and RAFFn methods, might provide enhanced contrast and sensitivity for the detection of myocardial scarring without contrast agents. Molecular probes, including gadolinium-based and protein-targeted contrast agents, improve the detection of molecular changes, facilitating early diagnosis and personalized treatment. Integrating MRI with positron emission tomography (PET) combines the high spatial and temporal resolution with molecular and functional imaging. CONCLUSION Recent advancements in mMRI and molecular imaging have changed the evaluation of myocardial ischemia, scarring, and viability. Despite significant progress, extensive research is needed to validate these techniques clinically and further develop imaging methods for better diagnostic and prognostic outcomes.
Collapse
Affiliation(s)
- Saara Sillanmäki
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Suvi Hartikainen
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Elias Ylä-Herttuala
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Park J, Kim MJ, Yoon JH, Han K, Kim EK, Sohn JH, Lee YH, Yoo Y. Machine Learning Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy for ER+HER2- Breast Cancer: Integrating Tumoral and Peritumoral MRI Radiomic Features. Diagnostics (Basel) 2023; 13:3031. [PMID: 37835774 PMCID: PMC10572844 DOI: 10.3390/diagnostics13193031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND This study aimed to predict pathologic complete response (pCR) in neoadjuvant chemotherapy for ER+HER2- locally advanced breast cancer (LABC), a subtype with limited treatment response. METHODS We included 265 ER+HER2- LABC patients (2010-2020) with pre-treatment MRI, neoadjuvant chemotherapy, and confirmed pathology. Using data from January 2016, we divided them into training and validation cohorts. Volumes of interest (VOI) for the tumoral and peritumoral regions were segmented on preoperative MRI from three sequences: T1-weighted early and delayed contrast-enhanced sequences and T2-weighted fat-suppressed sequence (T2FS). We constructed seven machine learning models using tumoral, peritumoral, and combined texture features within and across the sequences, and evaluated their pCR prediction performance using AUC values. RESULTS The best single sequence model was SVM using a 1 mm tumor-to-peritumor VOI in the early contrast-enhanced phase (AUC = 0.9447). Among the combinations, the top-performing model was K-Nearest Neighbor, using 1 mm tumor-to-peritumor VOI in the early contrast-enhanced phase and 3 mm peritumoral VOI in T2FS (AUC = 0.9631). CONCLUSIONS We suggest that a combined machine learning model that integrates tumoral and peritumoral radiomic features across different MRI sequences can provide a more accurate pretreatment pCR prediction for neoadjuvant chemotherapy in ER+HER2- LABC.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Min Jung Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Jong-Hyun Yoon
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Eun-Kyung Kim
- Department of Radiology, Research Institute of Radiological Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 06230, Republic of Korea;
| | - Joo Hyuk Sohn
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Young Han Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (J.-H.Y.); (K.H.); (J.H.S.); (Y.H.L.)
| | - Yangmo Yoo
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea;
| |
Collapse
|
6
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Liu J, Jin H, Chen Y, Fu C, Chen C, Zeng M. Free-breathing BLADE acquisition method improves T2-weighted cardiac MR image quality compared with conventional breath-hold turbo spin-echo cartesian acquisition. Acta Radiol 2021; 62:341-347. [PMID: 32443937 DOI: 10.1177/0284185120924567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac magnetic resonance (MR) has become an essential diagnostic imaging modality in cardiovascular disease. However, the insufficient image quality of traditional breath-hold (BH) T2-weighted (T2W) imaging may compromise its diagnostic accuracy. PURPOSE To assess the efficacy of the BLADE technique to reduce motion artifacts and improve the image quality. MATERIAL AND METHODS Free-breathing TSE-T2W imaging sequence with cartesian and BLADE k-space trajectory were acquired in 20 patients. Thirty patients underwent conventional BH turbo spin-echo (TSE) T2W imaging and free-breathing BLADE T2W (FB BLADE-T2W) imaging. Twenty-one patients who had a signal loss of myocardium in BH short-axis T2W turbo inversion recovery (TSE-T2W-TIR) were scanned using free-breathing BLADE T2W turbo inversion recovery (BLADE TSE-T2W-TIR). The overall image quality, blood nulling, and visualization of the heart were scored on a 5-point Likert scale. The signal loss of myocardium, incomplete fat suppression near the myocardium, and the streaking or ghosting artifacts were noted in T2W-TIR sequences additionally. RESULTS The overall imaging quality, blood nulling, and the visualization of heart structure of FB BLADE-T2W imaging sequence were significantly better than those of FB T2W imaging with Cartesian k-space trajectory and BH TSE-T2W imaging sequence (P<0.01). The FB BLADE TSE-T2W-TIR reduces the myocardium signal dropout (P<0.05), incomplete fat suppression near myocardium (P<0.05), and the streaking and ghosting artifacts (P<0.05) in comparison with the BH TSE-T2W-TIR. CONCLUSIONS FB BLADE T2W imaging provides improved myocardial visibility, less motion sensitivity, and better image quality. It may be applied in patients who have poor breath-holding capability.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, PR China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance, Shenzhen, PR China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, PR China
| |
Collapse
|
8
|
Broncano J, Bhalla S, Caro P, Hidalgo A, Vargas D, Williamson E, Gutiérrez F, Luna A. Cardiac MRI in Patients with Acute Chest Pain. Radiographics 2020; 41:8-31. [PMID: 33337967 DOI: 10.1148/rg.2021200084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute chest pain is a common reason for visits to the emergency department. It is important to distinguish among the various causes of acute chest pain, because treatment and prognosis are substantially different among the various conditions. It is critical to exclude acute coronary syndrome (ACS), which is a major cause of hospitalization, death, and health care costs worldwide. Myocardial ischemia is defined as potential myocyte death secondary to an imbalance between oxygen supply and demand due to obstruction of an epicardial coronary artery. Unobstructed coronary artery disease can have cardiac causes (eg, myocarditis, myocardial infarction with nonobstructed coronary arteries, and Takotsubo cardiomyopathy), and noncardiac diseases can manifest with acute chest pain and increased serum cardiac biomarker levels. In the emergency department, cardiac MRI may aid in the identification of patients with non-ST-segment elevation myocardial infarction or unstable angina or ACS with unobstructed coronary artery disease, if the patient's clinical history is known to be atypical. Also, cardiac MRI is excellent for risk stratification of patients for adverse left ventricular remodeling or major adverse cardiac events. Cardiac MRI should be performed early in the course of the disease (<2 weeks after onset of symptoms). Steady-state free-precession T2-weighted MRI with late gadolinium enhancement is the mainstay of the cardiac MRI protocol. Further sequences can be used to analyze the different pathophysiologic subjacent mechanisms of the disease, such as microvascular obstruction or intramyocardial hemorrhage. Finally, cardiac MRI may provide several prognostic biomarkers that help in follow-up of these patients. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Pilar Caro
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Alberto Hidalgo
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Eric Williamson
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Fernando Gutiérrez
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
9
|
Moulin K, Viallon M, Romero W, Chazot A, Mewton N, Isaaz K, Croisille P. MRI of Reperfused Acute Myocardial Infarction Edema: ADC Quantification versus T1 and T2 Mapping. Radiology 2020; 295:542-549. [PMID: 32208095 DOI: 10.1148/radiol.2020192186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background After acute myocardial infarction (AMI), reperfusion injury is associated with microvascular lesions and myocardial edema. Purpose To evaluate the performance of apparent diffusion coefficient (ADC) quantification compared with T1 and T2 values in the detection of acute myocardial injury. Materials and Methods In this prospective study conducted from June 2016 to November 2018, participants without a history of heart failure or cardiomyopathy were enrolled after undergoing reperfusion for their first AMI. Quantitative T1 and T2 mapping were performed with a 1.5-T MRI scanner and compared with a fast free-breathing acquisition technique for ADC mapping (approximate duration, 3 minutes; five slices; spin-echo cardiac diffusion acquisition; b values, 0 and 200 sec/mm2; six diffusion-encoding directions; five repetitions). Quantitative ADC and unenhanced T1 and T2 values were compared in infarct, border, and remote regions by using Welch analysis of variance with Games-Howell post hoc test for pairwise comparisons. Results Thirty-four participants with AMI underwent MRI an average of 5 days ± 1.9 (standard deviation) after reperfusion. Mean ADC was markedly high in the infarcted regions (2.32 × 10-3 mm2/sec; 95% confidence interval [CI]: 2.28, 2.36) and moderately high in the border regions (1.91 ×10-3 mm2/sec; 95% CI: 1.89, 1.94; P < .001). In remote regions, mean ADC (1.62 ×10-3 mm2/sec; 95% CI: 1.59, 1.64) was comparable to that measured in vivo in healthy volunteers. Within the same regions of interest, although the measures showed similar trends in infarct and remote regions for T1 (mean, 1332 mec [95% CI: 1296, 1368] vs 1045 msec [95% CI: 1034, 1056]; P < .001) and T2 (72 msec [95% CI: 69, 75] vs 50 msec [95% CI: 49, 51]; P < .001), the magnitude of the differences among regions was greater when using ADC. Normalized signal differences between infarct and remote regions showed that diffusion-weighted MRI depicted edema 5.1 (P < .001) and 3.5 (P < .001) times greater than did T1 and T2 maps, respectively. Conclusion Multislice cardiac diffusion-weighted images could be acquired in those with acute myocardial injury. Quantitative apparent diffusion coefficient mapping showed greater differences among remote regions and lesions than did T1 or T2 mapping. © RSNA, 2020 See also the editorial by Lloyd and Farris in this issue.
Collapse
Affiliation(s)
- Kevin Moulin
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - Magalie Viallon
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - William Romero
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - Alban Chazot
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - Nathan Mewton
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - Karl Isaaz
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| | - Pierre Croisille
- From the Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France (K.M., M.V., W.R., A.C., P.C.); Department of Radiology, Centre Hospitalier Universitaire de Saint Etienne, CREATIS UMR 5020, INSERM U1206, Avenue Albert Raimond, 42000 Saint Etienne Cedex, France (M.V., P.C.); Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, INSERM 1407, Lyon, France (N.M.); and Department of Cardiology, University Hospital Saint Etienne, Université Jean Monnet, Saint Etienne, France (K.I.)
| |
Collapse
|
10
|
Xiang SF, Zhang XQ, Yang SJ, Gao YY, Gao BL, Shi QL, Li S. Intravoxel Incoherent Motion Magnetic Resonance Imaging with Integrated Slice-specific Shimming for old myocardial infarction: A Pilot Study. Sci Rep 2019; 9:19766. [PMID: 31875029 PMCID: PMC6930276 DOI: 10.1038/s41598-019-56489-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/12/2019] [Indexed: 11/14/2022] Open
Abstract
Currently, little is known regarding the value of quantitative parameters derived from the intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) with integrated slice-specific shimming (iShim) sequence in detecting old myocardial infarction and myocardial fibrosis. This study was to investigate the value of IVIM-MRI with iShim sequence in diagnosing old myocardial infarction and fibrosis. Thirty-five patients with both old myocardial infarction and myocardial fibrosis and 12 healthy volunteers were prospectively enrolled to undergo cardiac diffusion-weighted imaging (DWI) using seven b-values (0, 20, 60, 80, 120, 200 and 600 s/mm2). The iShim sequence was used for IVIM data acquisition, and the diffusion parameters, D, D* and f values for IVIM, and conventional apparent diffusion coefficient (ADC) were evaluated on the anterior, posterior and lateral walls of the ventricular septum using the short axis of the heart. Significant differences were found in the D, D* and f values between healthy subjects and patients with old myocardial infarction and myocardial fibrosis (P = 0.000), with the median value of the D and f significantly smaller in the myocardial infarction and fibrosis than in the normal control but the median value of D* significantly greater in the myocardial infarction and fibrosis than in the normal control. In the receiver operating curve analysis, the areas under the curve were 0.939, 0.988 and 0.959 for the D, D* and f values, respectively. The sensitivities and specificities were 84.6% and 94.4% for D, 88.9% and 84.6% for D* and 100% and 93.1% for the f values, respectively. In conclusion, the IVIM-derived parameters (D, D* and f) obtained using the iShim DWI technique showed high capacity in diagnosing old myocardial infarction and myocardial fibrosis by providing diffusion and perfusion information, which may have great importance in future clinical practice.
Collapse
Affiliation(s)
- Shi-Feng Xiang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Xue-Qiang Zhang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China.
| | - Su-Jun Yang
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Yun-Yun Gao
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Bu-Lang Gao
- Handan Central Hospital, 15 Southern Zhonghua Street, Handan City, Hebei Province, 056001, China
| | - Qing-Lei Shi
- Siemens medical system Co. Ltd., Beijing, 100176, China
| | - Shuai Li
- Siemens medical system Co. Ltd., Beijing, 100176, China
| |
Collapse
|
11
|
Chen YY, Wu CL, Shen SH. High Signal in Bone Marrow on Diffusion-Weighted Imaging of Female Pelvis: Correlation With Anemia and Fibroid-Associated Symptoms. J Magn Reson Imaging 2018; 48:1024-1033. [PMID: 29504179 DOI: 10.1002/jmri.26002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The diffusion-weighted imaging (DWI) signals of the female pelvic bone marrow show great variability and are usually high in female patients with fibroid-associated symptoms and anemia. PURPOSE To ascertain clinical factors contributing to high signal intensity in the bone marrow of the female pelvis on DWI. STUDY TYPE Retrospective case-control study. SUBJECTS A single-institution review of 221 female patients underwent a pelvic magnetic resonance study from December 2012 to July 2014. FIELD STRENGTH/SEQUENCE 1.5T/DWI (b = 0 and 1000) and apparent diffusion coefficient (ADC). ASSESSMENT The ADC of pelvic bone marrow and the muscle-normalized signal intensity (SI) on DWI (mnDWI) were measured. A brightness grading scale ranging from 0 to 4 was used for pelvic bone assessment. Clinical factors, namely, age, the lowest hemoglobin level in the last 6 months, the presence of large uterine fibroids, and/or adenomyosis and fibroid-associated symptoms were recorded. STATISTICAL TESTS The relationships between the brightness grade and clinical factors were evaluated through multinomial logistic regression, and correlations of mnDWI and the ADC with the clinical factors were analyzed through the Kruskal-Wallis test, Jonckheere's trend test, and the Mann-Whitney U-test with Bonferroni correction. RESULTS Age and the hemoglobin level were inversely associated with the bone marrow brightness grade on DWI (both P < 0.05), whereas the presence of fibroid-associated symptoms showed a positive association (P = 0.028). The ADC and mnDWI in women younger than 50 years were significantly higher than those in older women (both P < 0.0001). The ADC had no significant correlation with anemia (P = 0.511), whereas mnDWI increased as the severity of anemia increased (P = 0.00154). DATA CONCLUSION Our study showed an association of high DWI SI of pelvic bone marrow with anemia in premenopausal women. LEVEL OF EVIDENCE 4 Technical Efficacy Stage 3 J. Magn. Reson. Imaging 2018;48:1024-1033.
Collapse
Affiliation(s)
- Ying-Yuan Chen
- Department of Radiology, National Yang-Ming University Hospital, Yilan County, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ching-Lan Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shu-Huei Shen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Khan JN, McCann GP. Cardiovascular magnetic resonance imaging assessment of outcomes in acute myocardial infarction. World J Cardiol 2017; 9:109-133. [PMID: 28289525 PMCID: PMC5329738 DOI: 10.4330/wjc.v9.i2.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/02/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging uniquely characterizes myocardial and microvascular injury in acute myocardial infarction (AMI), providing powerful surrogate markers of outcomes. The last 10 years have seen an exponential increase in AMI studies utilizing CMR based endpoints. This article provides a contemporary, comprehensive review of the powerful role of CMR imaging in the assessment of outcomes in AMI. The theory, assessment techniques, chronology, importance in predicting left ventricular function and remodelling, and prognostic value of each CMR surrogate marker is described in detail. Major studies illustrating the importance of the markers are summarized, providing an up to date review of the literature base in CMR imaging in AMI.
Collapse
Affiliation(s)
- Jamal N Khan
- Jamal N Khan, Gerry P McCann, Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Cardiovascular Biomedical Research Unit, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Gerry P McCann
- Jamal N Khan, Gerry P McCann, Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Cardiovascular Biomedical Research Unit, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| |
Collapse
|
13
|
Jin J, Chen M, Li Y, Wang Y, Zhang S, Wang Z, Wang L, Ju S. Detecting Acute Myocardial Infarction by Diffusion-Weighted versus T2-Weighted Imaging and Myocardial Necrosis Markers. Tex Heart Inst J 2016; 43:383-391. [PMID: 27777517 DOI: 10.14503/thij-15-5462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used a porcine model of acute myocardial infarction to study the signal evolution of ischemic myocardium on diffusion-weighted magnetic resonance images (DWI). Eight Chinese miniature pigs underwent percutaneous left anterior descending or left circumflex coronary artery occlusion for 90 minutes followed by reperfusion, which induced acute myocardial infarction. We used DWI preprocedurally and hourly for 4 hours postprocedurally. We acquired turbo inversion recovery magnitude T2-weighted images (TIRM T2WI) and late gadolinium enhancement images from the DWI slices. We measured the serum myocardial necrosis markers myoglobin, creatine kinase-MB isoenzyme, and cardiac troponin I at the same time points as the magnetic resonance scanning. We used histochemical staining to confirm injury. All images were analyzed qualitatively. Contrast-to-noise ratio (the contrast between infarcted and healthy myocardium) and relative signal index were used in quantitative image analysis. We found that DWI identified myocardial signal abnormity early (<4 hr) after acute myocardial infarction and identified the infarct-related high signal more often than did TIRM T2WI: 7 of 8 pigs (87.5%) versus 3 of 8 (37.5%) (P=0.046). Quantitative image analysis yielded a significant difference in contrast-to-noise ratio and relative signal index between infarcted and normal myocardium on DWI. However, within 4 hours after infarction, the serologic myocardial injury markers were not significantly positive. We conclude that DWI can be used to detect myocardial signal abnormalities early after acute myocardial infarction-identifying the infarction earlier than TIRM T2WI and widely used clinical serologic biomarkers.
Collapse
|
14
|
|
15
|
Pennell DJ, Baksi AJ, Prasad SK, Raphael CE, Kilner PJ, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider J, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2014. J Cardiovasc Magn Reson 2015; 17:99. [PMID: 26589839 PMCID: PMC4654908 DOI: 10.1186/s12968-015-0203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/19/2023] Open
Abstract
There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6% decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - A J Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - C E Raphael
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - P J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - R H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - F Alpendurada
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S V Babu-Narayan
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - J Schneider
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - D N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| |
Collapse
|
16
|
Saba L, Fellini F, De Filippo M. Diagnostic value of contrast-enhanced cardiac magnetic resonance in patients with acute coronary syndrome with normal coronary arteries. Jpn J Radiol 2015; 33:410-7. [DOI: 10.1007/s11604-015-0440-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/14/2015] [Indexed: 01/01/2023]
|
17
|
Pennell DJ, Baksi AJ, Kilner PJ, Mohiaddin RH, Prasad SK, Alpendurada F, Babu-Narayan SV, Neubauer S, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2013. J Cardiovasc Magn Reson 2014; 16:100. [PMID: 25475898 PMCID: PMC4256918 DOI: 10.1186/s12968-014-0100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/19/2023] Open
Abstract
There were 109 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2013, which is a 21% increase on the 90 articles published in 2012. The quality of the submissions continues to increase. The editors are delighted to report that the 2012 JCMR Impact Factor (which is published in June 2013) has risen to 5.11, up from 4.44 for 2011 (as published in June 2012), a 15% increase and taking us through the 5 threshold for the first time. The 2012 impact factor means that the JCMR papers that were published in 2010 and 2011 were cited on average 5.11 times in 2012. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley John Pennell
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Arun John Baksi
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Philip John Kilner
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Raad Hashem Mohiaddin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sanjay Kumar Prasad
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Francisco Alpendurada
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sonya Vidya Babu-Narayan
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | | | - David Nigel Firmin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| |
Collapse
|