Li H, Li X, Cao T, Zhu Q, Liu F, Zhou H. Effect of Copper-Containing Stainless Steel on Apoptosis of Coronary Artery Smooth Muscle Cells.
IRANIAN JOURNAL OF PUBLIC HEALTH 2021;
50:1825-1831. [PMID:
34722378 PMCID:
PMC8542820 DOI:
10.18502/ijph.v50i9.7055]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Background:
We aimed to investigate the effect of copper stainless steel on apoptosis of vascular smooth muscle cells in coronary artery.
Methods:
The study was carried out in 2019 at Hubei University of Medicine, Xiangyang, China. The rat coronary artery smooth muscle cell was used for cell resuscitation and culture. MTT method was used to visualize cell growth curve and to detect the cell survival and growth. The incubated cells were randomly divided into copper-containing stainless-steel group, ordinary stainless-steel group, and control group. The cells were made into single cell suspension, which were intervened by experimental group and incubated in incubator with CO2 for 48 hours. TUNEL method was used to detect the apoptosis. The number of apoptotic cells in five high power fields (×200) was counted. The expression of Fas protein in three groups of cells was detected by Western blot.
Results:
The growth curves of rat coronary artery smooth muscle cells showed that the OD value of the cells reached the plateau 7 days after inoculation, indicating that the cells grew well. TUNEL staining showed the apoptosis in all three groups. The apoptotic index in copper-containing group was significantly higher than that in common stainless-steel group (P <0.01). The results of the Fas protein expression level through Western blot showed that the level in the copper-containing group was significantly higher than that in the common stainless-steel group (P<0.01).
Conclusion:
Copper-containing stainless steel can promote apoptosis of coronary artery smooth muscle cells. The material could prevent stent restenosis.
Collapse