1
|
Ryabchikov YV, Mirza I, Flimelová M, Kana A, Romanyuk O. Merging of Bi-Modality of Ultrafast Laser Processing: Heating of Si/Au Nanocomposite Solutions with Controlled Chemical Content. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:321. [PMID: 38392694 PMCID: PMC10891774 DOI: 10.3390/nano14040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Ultrafast laser processing possesses unique outlooks for the synthesis of novel nanoarchitectures and their further applications in the field of life science. It allows not only the formation of multi-element nanostructures with tuneable performance but also provides various non-invasive laser-stimulated modalities. In this work, we employed ultrafast laser processing for the manufacturing of silicon-gold nanocomposites (Si/Au NCs) with the Au mass fraction variable from 15% (0.5 min ablation time) to 79% (10 min) which increased their plasmonic efficiency by six times and narrowed the bandgap from 1.55 eV to 1.23 eV. These nanostructures demonstrated a considerable fs laser-stimulated hyperthermia with a Au-dependent heating efficiency (~10-20 °C). The prepared surfactant-free colloidal solutions showed good chemical stability with a decrease (i) of zeta (ξ) potential (from -46 mV to -30 mV) and (ii) of the hydrodynamic size of the nanoparticles (from 104 nm to 52 nm) due to the increase in the laser ablation time from 0.5 min to 10 min. The electrical conductivity of NCs revealed a minimum value (~1.53 µS/cm) at 2 min ablation time while their increasing concentration was saturated (~1012 NPs/mL) at 7 min ablation duration. The formed NCs demonstrated a polycrystalline Au nature regardless of the laser ablation time accompanied with the coexistence of oxidized Au and oxidized Si as well as gold silicide phases at a shorter laser ablation time (<1 min) and the formation of a pristine Au at a longer irradiation. Our findings demonstrate the merged employment of ultrafast laser processing for the design of multi-element NCs with tuneable properties reveal efficient composition-sensitive photo-thermal therapy modality.
Collapse
Affiliation(s)
- Yury V. Ryabchikov
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czech Republic
| | - Inam Mirza
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czech Republic
| | - Miroslava Flimelová
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czech Republic
| | - Antonin Kana
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague Technická 5, 166 28 Prague, Czech Republic
| | - Oleksandr Romanyuk
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| |
Collapse
|
2
|
Kim T, Lee TH, Park SY, Eom TH, Cho I, Kim Y, Kim C, Lee SA, Choi MJ, Suh JM, Hwang IS, Lee D, Park I, Jang HW. Drastic Gas Sensing Selectivity in 2-Dimensional MoS 2 Nanoflakes by Noble Metal Decoration. ACS NANO 2023; 17:4404-4413. [PMID: 36825770 DOI: 10.1021/acsnano.2c09733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonhoo Kim
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Donghwa Lee
- Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
3
|
Flimelová M, Ryabchikov YV, Behrends J, Bulgakova NM. Environmentally Friendly Improvement of Plasmonic Nanostructure Functionality towards Magnetic Resonance Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:764. [PMID: 36839132 PMCID: PMC9965577 DOI: 10.3390/nano13040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have attracted a broad research interest due to their application perspectives in various fields such as biosensing, catalysis, photovoltaics, and biomedicine. Their synthesis by pulsed laser ablation in pure water enables eliminating various side effects originating from chemical contamination. Another advantage of pulsed laser ablation in liquids (PLAL) is the possibility to controllably produce plasmonic nanoparticles (NPs) in combination with other plasmonic or magnetic materials, thus enhancing their functionality. However, the PLAL technique is still challenging in respect of merging metallic and semiconductor specific features in nanosized objects that could significantly broaden application areas of plasmonic nanostructures. In this work, we performed synthesis of hybrid AuSi NPs with novel modalities by ultrashort laser ablation of bulk gold in water containing silicon NPs. The Au/Si atomic ratio in the nanohybrids was finely varied from 0.5 to 3.5 when changing the initial Si NPs concentration in water from 70 µg/mL to 10 µg/mL, respectively, without requiring any complex chemical procedures. It has been found that the laser-fluence-insensitive silicon content depends on the mass of nanohybrids. A high concentration of paramagnetic defects (2.2·× 1018 spin/g) in polycrystalline plasmonic NPs has been achieved. Our findings can open further prospects for plasmonic nanostructures as contrast agents in optical and magnetic resonance imaging techniques, biosensing, and cancer theranostics.
Collapse
Affiliation(s)
- Miroslava Flimelová
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic
| | - Yury V. Ryabchikov
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic
| | - Jan Behrends
- Berlin Joint EPR Lab., Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Nadezhda M. Bulgakova
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic
| |
Collapse
|
4
|
Tian C, Tang Z, Hou Y, Mushtaq A, Naz S, Yu Z, Farheen J, Iqbal MZ, Kong X. Facile Synthesis of Multifunctional Magnetoplasmonic Au-MnO Hybrid Nanocomposites for Cancer Theranostics. NANOMATERIALS 2022; 12:nano12081370. [PMID: 35458078 PMCID: PMC9027802 DOI: 10.3390/nano12081370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Significant attention is paid to the design of magnetoplasmonic nanohybrids, which exploit synergistic properties for biomedical applications. Here, a facile method was employed to prepare plasmonic magnetic Au-MnO heterostructured hybrid nanoparticles for imaging-guided photothermal therapy of cancers in vitro, with the view to reducing the serious drawbacks of chemotherapy and gadolinium-based contrast agents. The biocompatibility of the prepared Au-MnO nanocomposites was further enhanced by Food and Drug Administration (FDA)-approved triblock copolymers Pluronic® F-127 and chitosan oligosaccharide (COS), with complementary support to enhance the absorption in the near-infrared (NIR) region. In addition, synthesized COS-PF127@Au-MnO nanocomposites exhibited promising contrast enhancement in T1 MR imaging with a good r1 relaxivity value (1.2 mM-1 s-1), demonstrating a capable substitute to Gd-based toxic contrast agents. In addition, prepared COS-PF127@Au-MnO hybrid nanoparticles (HNPs) produced sufficient heat (62 °C at 200 μg/mL) to ablate cancerous cells upon 808 nm laser irradiation, inducing cell toxicity, and apoptosis. The promising diagnostic and photothermal therapeutic performance demonstrated the appropriateness of the COS-PF127@Au-MnO HNPs as a potential theranostic agent.
Collapse
Affiliation(s)
- Cong Tian
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Shafaq Naz
- Department of Mathematics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan;
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing 312000, China;
| | - Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
- Correspondence: (M.Z.I.); (X.K.)
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
- Correspondence: (M.Z.I.); (X.K.)
| |
Collapse
|
5
|
Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Sci Rep 2019; 9:9239. [PMID: 31239459 PMCID: PMC6592931 DOI: 10.1038/s41598-019-45638-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/11/2019] [Indexed: 11/30/2022] Open
Abstract
Macroscopic fibers of carbon nanotubes (CNT) have emerged as an ideal architecture to exploit the exceptional properties of CNT building blocks in applications ranging from energy storage to reinforcement in structural composites. Controlled synthesis and scalability are amongst the most pressing challenges to further materialize the potential of CNT fibers. This work shows that under floating catalyst chemical vapor conditions in the direct spinning method, used both in research and industry, the ceramic reactor tube plays an unsuspected active role in CNT growth, leading for example to doubling of reaction yield when mullite (Al4+2xSi2−2xO10−x(x ≈ 0:4)) is used instead of alumina (Al2O3), but without affecting CNT morphology in terms of number of layers, purity or degree of graphitization. This behaviour is confirmed for different carbon sources and when growing either predominantly single-walled or multi-walled CNTs by adjusting promotor concentration. Analysis of large Si-based impurities occasionally found in CNT fiber fabric samples, attributed to reactor tube fragments that end up trapped in the porous fibers, indicate that the role of the reactor tube is in catalyzing the thermal decomposition of hydrocarbons, which subsequently react with floating Fe catalyst nanoparticles and produce extrusion of the CNTs and formation of an aerogel. Reactor gas analysis confirms that extensive thermal decomposition of the carbon source occurs in the absence of Fe catalyst particles, and that the concentration of different carbon species (e.g. carbon dioxide and ethylene) is sensitive to the reactor tube type. These finding open new avenues for controlled synthesis of CNT fibers by decoupling precursor decomposition from CNT extrusion at the catalyst particle.
Collapse
|
6
|
Mazouzi D, Grissa R, Paris M, Karkar Z, Huet L, Guyomard D, Roué L, Devic T, Lestriez B. CMC-citric acid Cu(II) cross-linked binder approach to improve the electrochemical performance of Si-based electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Zhu X, Wang R, Xia K, Zhou X, Shi H. Nucleic acid functionalized fiber optic probes for sensing in evanescent wave: optimization and application. RSC Adv 2019; 9:2316-2324. [PMID: 35516110 PMCID: PMC9059834 DOI: 10.1039/c8ra10125f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleic acid functionalized evanescent wave fiber optic (EWFO) biosensors have attracted much attention due to their remarkable advantages in both device configuration and sensing performance. One critical technique in EWFO biosensor fabrication is its surface modification, which requires (1) minimal nonspecific adsorption and (2) high-quality DNA immobilization to guarantee satisfactory sensing performances. Focusing on these two requirements, a series of optimizations have been conducted in this work to develop reliable DNA-functionalized EWFO probes. Firstly, the surface planeness of EWFO probes were found to be greatly improved by a novel HF/HNO3 mixture etching solution. Both atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were conducted to investigate the morphological structures and surface chemical compositions. Besides, EWFO sensing performances adopting moderate immobilization of irrelevant DNA were investigated for optimization purposes. Furthermore, a split aptamer based sandwich-type EWFO sensor was developed using adenosine (Ade) as the model target (LOD = 25 μM). To the best of our knowledge, this study is the first case to focus on the optimization of etching solution compositions in the fabrication of combination tapered fibers, which provides experimental basis for the understanding of the silica-etching mechanism using HF/HNO3 mixture solution and may further inspire related researches. Reliable DNA-functionalized optic probes for sensing in evanescent wave have been developed based a series of optimizations on the etching solution and immobilization chemistry.![]()
Collapse
Affiliation(s)
- Xiyu Zhu
- State Key Joint Laboratory of ESPC
- Research Centre of Environmental and Health Sensing Technology
- Center for Sensor Technology of Environment and Health
- School of Environment
- Tsinghua University
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC
- Research Centre of Environmental and Health Sensing Technology
- Center for Sensor Technology of Environment and Health
- School of Environment
- Tsinghua University
| | - Kaidong Xia
- State Key Joint Laboratory of ESPC
- Research Centre of Environmental and Health Sensing Technology
- Center for Sensor Technology of Environment and Health
- School of Environment
- Tsinghua University
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC
- Research Centre of Environmental and Health Sensing Technology
- Center for Sensor Technology of Environment and Health
- School of Environment
- Tsinghua University
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC
- Research Centre of Environmental and Health Sensing Technology
- Center for Sensor Technology of Environment and Health
- School of Environment
- Tsinghua University
| |
Collapse
|
8
|
Li J, Wang L, Wang Z, Tian G, He X. Economic and High Performance Phosphorus-Carbon Composite for Lithium and Sodium Storage. ACS OMEGA 2017; 2:4440-4446. [PMID: 31457736 PMCID: PMC6641931 DOI: 10.1021/acsomega.7b00540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 06/09/2023]
Abstract
Porous carbon derived from rice hulls has potential for application in phosphorus-carbon composites as high capacity anode materials for lithium-ion and sodium-ion batteries. The native composition of rice husks produces a porous carbon with a unique doped structure, as well as an efficient pore and channel structure, which may facilitate high and stable lithium storage. After cycling for over 100 cycles, the composite delivered a capacity of about 1293 mAh g-1, as well as a coulombic efficiency of nearly 99% at the current density of 130 mA g-1 with a capacity density of 1.43 mAh cm-2. High specific discharge capacities were maintained at different current densities (∼2224, ∼1895, ∼1642, and ∼1187 mAh g-1 composite at 130, 260, 520, and 1300 mA g-1, respectively). This study may offer a golden opportunity to change the humble fate of rice hulls, and also pave the way toward successful battery application for phosphorus-carbon composite anode materials.
Collapse
Affiliation(s)
- Jiaoyang Li
- Institute
of Nuclear & New Energy Technology and Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Li Wang
- Institute
of Nuclear & New Energy Technology and Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory
of New Ceramics and Fine Processing, Beijing 100084, China
| | - Zhengyang Wang
- Institute
of Nuclear & New Energy Technology and Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
| | - Guangyu Tian
- Institute
of Nuclear & New Energy Technology and Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute
of Nuclear & New Energy Technology and Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Chinnakkannu Vijayakumar S, Venkatakrishnan K, Tan B. SERS Active Nanobiosensor Functionalized by Self-Assembled 3D Nickel Nanonetworks for Glutathione Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5077-5091. [PMID: 28117567 DOI: 10.1021/acsami.6b13576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a "non-noble metal" based SERS active nanobiosensor using a self-assembled 3D hybrid nickel nanonetwork. A tunable biomolecule detector fabricated by a bottom-up approach was functionalized using a multiphoton ionization energy mechanism to create a self-assembled 3D hybrid nickel nanonetwork. The nanonetwork was tested for SERS detection of crystal violet (CV) and glutathione (GSH) at two excitation wavelengths, 532 and 785 nm. The results reveal indiscernible peaks with a limit of detection (LOD) of 1 picomolar (pM) concentration. An enhancement factor (EF) of 9.3 × 108 was achieved for the chemical molecule CV and 1.8 × 109 for the biomolecule GSH, which are the highest reported values so far. The two results, one being the CV molecule proved that nickel nanonetwork is indeed SERS active and the second being the GSH biomolecule detection at both 532 and 785 nm, confirm that the nanonetwork is a biosensor which has potential for both in vivo and in vitro sensing. In addition, the selectivity and versatility of this biosensor is examined with biomolecules such as l-Cysteine, l-Methionine, and sensing GSH in cell culture medium which mimics the complex biological environment. The functionalized self-assembled 3D hybrid nickel nanonetwork exhibits electromagnetic and charge transfer based SERS activation mechanisms.
Collapse
Affiliation(s)
- Sivaprasad Chinnakkannu Vijayakumar
- Micro/Nanofabrication facility, Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Micro/Nanofabrication facility, Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria street, Toronto, Ontario M5B 2K3, Canada
- Affiliate Scientist, Keenan Research Center, St. Michael's Hospital , 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada
| | - Bo Tan
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
10
|
Farghaly AA, Collinson MM. Electroassisted codeposition of sol-gel derived silica nanocomposite directs the fabrication of coral-like nanostructured porous gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5276-5286. [PMID: 24766096 DOI: 10.1021/la500614g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein, we report on a one-step coelectrodeposition method to form gold-silica nanocomposite materials from which high surface area nanostructured gold electrodes can be produced. The as-prepared Au-SiO2 films possess an interconnected three-dimensional porous framework with different silica-gold ratios depending on the deposition solutions and parameters. Chemical etching of the nanocomposite films using hydrofluoric acid resulted in the formation of nanostructured porous gold films with coral-like structures and pores in the nanometer range. The cross-linkage of the gold coral branches resulted in the generation of a porous framework. X-ray photoelectron spectroscopy confirms the complete removal of silica. Well-controlled surface area enhancement, film thickness, and morphology were achieved by manipulating the deposition parameters, such as potential, time, and gold ion and sol-gel monomer concentrations in the deposition solution. An enhancement in the surface area of the electrode up to 57 times relative to the geometric area has been achieved. The thickness of the as-prepared Au-SiO2 nanocomposite films is relatively high and varied from 8 to 15 μm by varying the applied deposition potential while the thickness of the coral-like nanostructured porous gold films ranged from 0.22 to 2.25 μm. A critical sol-gel monomer concentration (CSGC) was determined at which the deposited silica around the gold coral was able to stabilize the coral-like gold nanostructures, while below the CSGC, the coral-like gold nanostructures were unstable and the surface area of the nanostructured porous gold electrodes decreased.
Collapse
Affiliation(s)
- Ahmed A Farghaly
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | | |
Collapse
|
11
|
Song Y, Wang Y, Li BB, Fernandes C, Ruda HE. Interface interaction induced ultra-dense nanoparticles assemblies. NANOSCALE 2013; 5:6779-6789. [PMID: 23793729 DOI: 10.1039/c3nr01366a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 ± 1.0 nm to 12.5 ± 2.9 nm, mean inter-edge spacings from 3.5 ± 1.4 nm to 7.9 ± 3.4 nm and areal densities from 5.6 × 10(11) NPs per cm(2) to 1.5 × 10(12) NPs per cm(2) are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 ± 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.
Collapse
Affiliation(s)
- Yujun Song
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
12
|
Ruffino F, Pugliara A, Carria E, Romano L, Bongiorno C, Spinella C, Grimaldi MG. Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. NANOTECHNOLOGY 2012; 23:045601. [PMID: 22214877 DOI: 10.1088/0957-4484/23/4/045601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate the possibility of producing Au/SiO(2) core-shell nanoparticles by nanosecond laser irradiation of thin (5 and 20 nm) Au films on Si. The Au/Si eutectic reaction and dewetting process caused by the fast melting and solidification dynamics induced by the nanosecond laser irradiations are investigated as the origin of the formation of core-shell nanoparticles. Using several microscopic techniques (Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy filtered transmission electron microscopy) the formation and evolution of the core-shell structures are investigated as a function of the laser fluence in the 500-1500 mJ cm(-2) range for both film thicknesses. In particular, the mean height and diameter and surface density evolution of the core-shell structures are quantified and correlated to the laser fluence and Au film thickness.
Collapse
Affiliation(s)
- F Ruffino
- Dipartimento di Fisica e Astronomia Università di Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|