1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Oubraham A, Ion-Ebrasu D, Vasut F, Soare A, Sorlei IS, Marinoiu A. Platinum-Functionalized Graphene Oxide: One-Pot Synthesis and Application as an Electrocatalyst. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1897. [PMID: 36903011 PMCID: PMC10004439 DOI: 10.3390/ma16051897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This paper presents the preparation of platinum on a reduced graphene oxide matrix (PtrGO) using the microwave-assisted method with three different pH solutions. The platinum concentration determined by energy-dispersive X-ray analysis (EDX) was 4.32 (weight%), 2.16 (weight %) and 5.70 (weight%), corresponding to pH 3.3, 11.7 and 7.2, respectively. Pt functionalization of reduced graphene oxide (rGO) decreased the rGO specific surface, as shown by Brunauer, Emmett and Teller (BET) analysis. An XRD spectrum of platinum-decorated reduced graphene oxide (rGO) showed the presence of the associated phases of rGO and centered cubic platinum peaks. An oxygen reduction reaction (ORR) electrochemical characterization performed using the rotating disk electrode (RDE) method showed that in PtGO1 synthetized in an acidic environment, with 4.32 Pt (weight%) determined by EDX, platinum is much more dispersed, which explains its better electrochemical oxygen reduction reaction performance. Koutecky-Levich (K-L) plots calculated at different potentials prove a good linear relationship. Electron transfer numbers (n) determined from the K-L plots are between 3.1 and 3.8, which confirms that the ORR for all the samples can be regarded as first-order reaction kinetics of O2 concentration formed on the Pt surface during ORR.
Collapse
|
3
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
4
|
Wang Y, Hou Q, Ju M, Li W. New Developments in Material Preparation Using a Combination of Ionic Liquids and Microwave Irradiation. NANOMATERIALS 2019; 9:nano9040647. [PMID: 31013641 PMCID: PMC6523822 DOI: 10.3390/nano9040647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022]
Abstract
During recent years, synthetic methods combining microwaves and ionic liquids became accepted as a promising methodology for various materials preparations because of their high efficiency and low energy consumption. Ionic liquids with high polarity are heated rapidly, volumetrically and simultaneously under microwave irradiation. Hence, combination of microwave irradiation as a heating source with ionic liquids with various roles (e.g., solvent, additive, template or reactant) opened a completely new technique in the last twenty years for nanomaterials and polymers preparation for applications in various materials science fields including polymer science. This review summarizes recent developments of some common materials syntheses using microwave-assisted ionic liquid method with a focus on inorganic nanomaterials, polymers, carbon-derived composites and biomass-based composites. After that, the mechanisms involved in microwave-assisted ionic-liquid (MAIL) are discussed briefly. This review also highlights the role of ionic liquids in the reaction and crucial issues that should be addressed in future research involving this synthesis technique.
Collapse
Affiliation(s)
- Yannan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qidong Hou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Weizun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Madni A, Noreen S, Maqbool I, Rehman F, Batool A, Kashif PM, Rehman M, Tahir N, Khan MI. Graphene-based nanocomposites: synthesis and their theranostic applications. J Drug Target 2018; 26:858-883. [DOI: 10.1080/1061186x.2018.1437920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Noreen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irsah Maqbool
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faizza Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Batool
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Mubashar Rehman
- Department of Pharmacy, The University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Imran Khan
- College of Pharmacy Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Li Y, Huang D, Shen W. Preparation of supercapacitors based on nanocomposites films of MnO2/CB/C from sodium alginate and MnO2 nanoparticles by direct electrophoretic deposition and carbonization. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|