1
|
Gao S, Song H. Differences between psoriatic arthritis and psoriasis in multi-omics. Arch Dermatol Res 2024; 316:217. [PMID: 38787526 DOI: 10.1007/s00403-024-03018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
We aim to systemically review the genomics, transcriptomics, epigenetics, proteomics, metabonomics and microbiota of psoriatic arthritis and psoriasis, illustrating the differences of these two diseases, broadening our understanding of the pathogenesis of them and providing important clues for valuable biomarkers of earlier diagnosis and treatments. To our knowledge, this is the first study that combine all omics studies from genomics to microbiota and may serve as a reference for future studies to identify the key underlying pathways in psoriatic arthritis.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, Guiyang, China
- Department of Rheumatology, Beijing Jishuitan Hospital, Capital Medical University, No.31, Xin Jie Kou East Street, Xicheng District, Beijing, 100035, China
| | - Hui Song
- Department of Rheumatology, Beijing Jishuitan Hospital, Capital Medical University, No.31, Xin Jie Kou East Street, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
2
|
Johnsson H, Cole J, McInnes IB, Graham G, Siebert S. Differences in transcriptional changes in psoriasis and psoriatic arthritis skin with immunoglobulin gene enrichment in psoriatic arthritis. Rheumatology (Oxford) 2024; 63:218-225. [PMID: 37137278 PMCID: PMC10765156 DOI: 10.1093/rheumatology/kead195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES Approximately 20% of people with psoriasis develop PsA. Although genetic, clinical and environmental risk factors have been identified, it is not known why some people with psoriasis develop PsA. The skin disease is traditionally considered the same in both. This study compares transcriptional changes in psoriasis and PsA skin for the first time. METHODS Skin biopsies were collected from healthy controls (HC), and uninvolved and lesional skin from patients with PsA. Bulk tissue sequencing was performed and analysed using the pipeline Searchlight 2.0. Transcriptional changes in PsA skin were compared with existing sequencing data from participants with psoriasis without PsA (GSE121212). Psoriasis and PsA datasets could not be directly compared as different analysis methods were used. Data from participants with PsA in the GSE121212 dataset were used for validation. RESULTS Skin samples from 9 participants with PsA and 9 HC were sequenced, analysed and compared with available transcriptomic data for 16 participants with psoriasis compared with 16 HC. Uninvolved skin in psoriasis shared transcriptional changes with lesional skin in psoriasis, but uninvolved skin in PsA did not. Most transcriptional changes in psoriasis and PsA lesional skin were shared, but immunoglobulin genes were upregulated in PsA lesional skin specifically. The transcription factor POU2F1, which regulates immunoglobulin gene expression, was enriched in PsA lesional skin. This was confirmed in the validation cohort. CONCLUSIONS Immunoglobulin genes are upregulated in PsA but not in psoriasis skin lesions. This may have implications for the spread from the cutaneous compartment to other tissues.
Collapse
Affiliation(s)
- Hanna Johnsson
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Gerard Graham
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Yu N, Wang J, Liu Y, Guo Y. Investigating the gut microbiota's influence on psoriasis and psoriatic arthritis risk: a Mendelian randomization analysis. PRECISION CLINICAL MEDICINE 2023; 6:pbad023. [PMID: 38025973 PMCID: PMC10680138 DOI: 10.1093/pcmedi/pbad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Numerous investigations have revealed the interplay between gut microbiota (GM) and psoriasis (Ps) and psoriatic arthritis (PsA). However, the causal relationship between them remains unknown. Methods We curated a collection of genetic variants (P < 1 × 10-5) associated with GM (n = 18 340) derived from the MiBioGen study. To explore the intricate relationship between GM and Ps as well as PsA, we harnessed the comprehensive resources of the FinnGen database, encompassing a vast cohort of individuals, including 4510 Ps cases and 212 242 controls and 1637 PsA cases and 212 242 controls. Mendelian randomization (MR) was used, including an inverse variance weighting method, followed by a sensitivity analysis to verify the robustness of the results. Results For Ps, some bacterial taxa, including Lactococcus, Ruminiclostridium 5, and Eubacterium fissicatena, were identified as risk factors; but Odoribacter demonstrated a protective effect against Ps. In the case of PsA, Lactococcus, Verrucomicrobiales, Akkermansia, Coprococcus 1, and Verrucomicrobiaceae were identified as risk factors; Odoribacter and Rikenellaceae exhibited a protective effect against the development of PsA. Conclusion Our study establishes a causal link between the GM and Ps and PsA. These findings provide insights into the underlying mechanisms and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiayi Wang
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Yuancheng Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yeye Guo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Zhang H, Zuo L, Li J, Geng Z, Ge S, Song X, Wang Y, Zhang X, Wang L, Zhao T, Deng M, Chai D, Wang Q, Yang Z, Liu Q, Qiu Q, He X, Yang Y, Ge Y, Wu R, Zheng L, Li J, Chen R, Sun J, Hu J. Construction of a fecal immune-related protein-based biomarker panel for colorectal cancer diagnosis: a multicenter study. Front Immunol 2023; 14:1126217. [PMID: 37313408 PMCID: PMC10258350 DOI: 10.3389/fimmu.2023.1126217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose To explore fecal immune-related proteins that can be used for colorectal cancer (CRC) diagnosis. Patients and methods Three independent cohorts were used in present study. In the discovery cohort, which included 14 CRC patients and 6 healthy controls (HCs), label-free proteomics was applied to identify immune-related proteins in stool that could be used for CRC diagnosis. Exploring potential links between gut microbes and immune-related proteins by 16S rRNA sequencing. The abundance of fecal immune-associated proteins was verified by ELISA in two independent validation cohorts and a biomarker panel was constructed that could be used for CRC diagnosis. The validation cohort I included 192 CRC patients and 151 HCs from 6 different hospitals. The validation cohort II included 141 CRC patients, 82 colorectal adenoma (CRA) patients, and 87 HCs from another hospital. Finally, the expression of biomarkers in cancer tissues was verified by immunohistochemistry (IHC). Results In the discovery study, 436 plausible fecal proteins were identified. And among 67 differential fecal proteins (|log2 fold change| > 1, P< 0.01) that could be used for CRC diagnosis, 16 immune-related proteins with diagnostic value were identified. The 16S rRNA sequencing results showed a positive correlation between immune-related proteins and the abundance of oncogenic bacteria. In the validation cohort I, a biomarker panel consisting of five fecal immune-related proteins (CAT, LTF, MMP9, RBP4, and SERPINA3) was constructed based on the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. The biomarker panel was found to be superior to hemoglobin in the diagnosis of CRC in both validation cohort I and validation cohort II. The IHC result showed that protein expression levels of these five immune-related proteins were significantly higher in CRC tissue than in normal colorectal tissue. Conclusion A novel biomarker panel consisting of fecal immune-related proteins can be used for the diagnosis of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Deng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Damin Chai
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiusheng Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanli Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xuxu He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiqun Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lin Zheng
- Department of Clinical Laboratory, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jianjun Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Runkai Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jialiang Sun
- Department of General Surgery, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jianguo Hu
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Johnsson H, Cole J, Siebert S, McInnes IB, Graham G. Cutaneous lesions in psoriatic arthritis are enriched in chemokine transcriptomic pathways. Arthritis Res Ther 2023; 25:73. [PMID: 37131254 PMCID: PMC10152590 DOI: 10.1186/s13075-023-03034-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/20/2023] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVES Skin from people with psoriasis has been extensively studied and is assumed to be identical to skin from those with psoriatic arthritis (PsA). Chemokines and the CC chemokine scavenger receptor ACKR2 are upregulated in uninvolved psoriasis. ACKR2 has been proposed as a regulator of cutaneous inflammation in psoriasis. The aim of this study was to compare the transcriptome of PsA skin to healthy control (HC) skin and evaluate ACKR2 expression in PsA skin. METHODS Full-thickness skin biopsies from HC, lesional and uninvolved skin from participants with PsA were sequenced on NovaSeq 6000. Findings were validated using qPCR and RNAscope. RESULTS Nine HC and nine paired PsA skin samples were sequenced. PsA uninvolved skin was transcriptionally similar to HC skin, and lesional PsA skin was enriched in epidermal and inflammatory genes. Lesional PsA skin was enriched in chemokine-mediated signalling pathways, but uninvolved skin was not. ACKR2 was upregulated in lesional PsA skin but had unchanged expression in uninvolved compared with HC skin. The expression of ACKR2 was confirmed by qPCR, and RNAscope demonstrated strong expression of ACKR2 in the suprabasal layer of the epidermis in PsA lesions. CONCLUSION Chemokines and their receptors are upregulated in lesional PsA skin but relatively unchanged in uninvolved PsA skin. In contrast to previous psoriasis studies, ACKR2 was not upregulated in uninvolved PsA skin. Further understanding of the chemokine system in PsA may help to explain why inflammation spreads from the skin to the joints in some people with psoriasis.
Collapse
Affiliation(s)
- Hanna Johnsson
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - John Cole
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Stefan Siebert
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Gerard Graham
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
6
|
Barroso-Villa G, Valdespin-Fierro C, Weiser-Smeke AE, Machargo-Gordillo AP, Flores-Pliego A, Palma-Lara I, Oehninger S. Follicular fluid biomarkers for prediction of human IVF outcome in women with poor ovarian response. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2023. [DOI: 10.1186/s43043-023-00128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
Background
The aim of controlled ovarian stimulation is to achieve an optimal number of mature oocytes to obtain good-quality embryos. High follicular fluid (FF) concentrations of FSH, hCG, and LH promote oocyte maturation and are associated with a higher probability of fertilization. LH concentrations in FF are consistently higher in follicles that will lead to a successful IVF outcome. The levels of some of these FF biomarkers may vary among different ovarian stimulation schemes; however, the effects of corifollitropin alfa, recombinant FSH (rFSH), LH (rLH), and highly purified urinary menotropins uhMG on these biomarkers are still unknown. The objective of this study was to characterize the profile of FF biomarkers (leptin, vascular endothelial growth factor (VEGF), metalloproteinases (MMPs), and NO2−/NO3−) according to three different protocols of controlled ovarian stimulation (COS) in poor ovarian responders (POR) and to evaluate the association between these profiles and clinical outcomes. Three groups of POR patients were examined according to the protocols used.
Results
Group C showed significant higher levels in all biomarkers (p < 0001). FF samples from Group B had the lowest levels of VEGF and Pro-MMP-9. Group A showed the lowest concentration of pro-MMP-2. The VEGF level and number of captured oocytes were positively correlated in Group C (r = 0.534, p = 0.01). MMP-9 and fertilization rate were negatively correlated in Group C (r = −0.476, p = 0.02). We found negative correlations between proMMP-2 and serum estradiol levels on the day of rhCG administration.
Conclusion
We found significant variations in the biomarker concentrations between the different controlled ovarian stimulation schemes used in POR patients. These differences can be potentially explained by the nature and composition of the gonadotropins. Our results support the hypothesis that some of these molecules should be thoroughly investigated as noninvasive predictors of egg quality.
Collapse
|
7
|
Gurke R, Bendes A, Bowes J, Koehm M, Twyman RM, Barton A, Elewaut D, Goodyear C, Hahnefeld L, Hillenbrand R, Hunter E, Ibberson M, Ioannidis V, Kugler S, Lories RJ, Resch E, Rüping S, Scholich K, Schwenk JM, Waddington JC, Whitfield P, Geisslinger G, FitzGerald O, Behrens F, Pennington SR. Omics and Multi-Omics Analysis for the Early Identification and Improved Outcome of Patients with Psoriatic Arthritis. Biomedicines 2022; 10:2387. [PMID: 36289648 PMCID: PMC9598654 DOI: 10.3390/biomedicines10102387] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients.
Collapse
Affiliation(s)
- Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - John Bowes
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WU, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Michaela Koehm
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | | | - Anne Barton
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WU, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Carl Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Ewan Hunter
- Oxford BioDynamics Limited, Oxford OX4 2JZ, UK
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vassilios Ioannidis
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Sabine Kugler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer IAIS, Institute for Intelligent Analysis and Information Systems, Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany
| | - Rik J. Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, P.O. Box 813 O&N, Herestraat 49, 3000 Leuven, Belgium
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Stefan Rüping
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer IAIS, Institute for Intelligent Analysis and Information Systems, Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany
| | - Klaus Scholich
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - James C. Waddington
- Atturos Ltd., c/o UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Phil Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QH, UK
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Oliver FitzGerald
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Frank Behrens
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Stephen R. Pennington
- Atturos Ltd., c/o UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
8
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
9
|
Sobolev VV, Soboleva AG, Denisova EV, Pechatnikova EA, Dvoryankova E, Korsunskaya IM, Mezentsev A. Proteomic Studies of Psoriasis. Biomedicines 2022; 10:biomedicines10030619. [PMID: 35327421 PMCID: PMC8945259 DOI: 10.3390/biomedicines10030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we discuss the contribution of proteomic studies to the discovery of disease-specific biomarkers to monitor the disease and evaluate available treatment options for psoriasis. Psoriasis is one of the most prevalent skin disorders driven by a Th17-specific immune response. Although potential patients have a genetic predisposition to psoriasis, the etiology of the disease remains unknown. During the last two decades, proteomics became deeply integrated with psoriatic research. The data obtained in proteomic studies facilitated the discovery of novel mechanisms and the verification of many experimental hypotheses of the disease pathogenesis. The detailed data analysis revealed multiple differentially expressed proteins and significant changes in proteome associated with the disease and drug efficacy. In this respect, there is a need for proteomic studies to characterize the role of the disease-specific biomarkers in the pathogenesis of psoriasis, develop clinical applications to choose the most efficient treatment options and monitor the therapeutic response.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| | - Anna G. Soboleva
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Elena V. Denisova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, 119071 Moscow, Russia
| | - Eva A. Pechatnikova
- Department of Dermatology and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Eugenia Dvoryankova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Irina M. Korsunskaya
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Alexandre Mezentsev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| |
Collapse
|
10
|
Elliott A, McGonagle D, Rooney M. Integrating imaging and biomarker assessment to better define psoriatic arthritis and predict response to biologic therapy. Rheumatology (Oxford) 2021; 60:vi38-vi52. [PMID: 34951926 PMCID: PMC8709569 DOI: 10.1093/rheumatology/keab504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for PsA have substantially expanded over the last decade. Approximately 40% of patients will not respond to first-line anti-TNF-α therapies. There is limited data to help clinicians select the most appropriate biologic therapy for PsA patients, including guidance for decisions on biologic therapy switching. In this review we will examine the current understanding of predictors of response to treatment. Imaging technology has evolved to allow us to better study psoriatic disease and define disease activity, including synovitis and enthesitis. Enthesitis is implicated in the pathogenesis, diagnosis and prognosis of PsA. It appears to be a common thread among all of the various PsA clinical presentations. Enthesitis mainly manifests as tenderness, which is difficult to distinguish from FM, chronic pain and mechanically associated enthesopathy, and it might be relevant for understanding the apparent 40% failure of existing therapy. Excess adipose tissue makes if more difficult to detect joint swelling clinically, as many PsA patients have very high BMIs. Integrating imaging and clinical assessment with biomarker analysis could help to deliver stratified medicine in PsA and allow better treatment decision making. This could include which patients require ongoing biologic therapy, which class of biologic therapy that should be, and who alternatively requires management of non-inflammatory disease.
Collapse
Affiliation(s)
- Ashley Elliott
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Madeleine Rooney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
11
|
Qi F, Tan Y, Yao A, Yang X, He Y. Psoriasis to Psoriatic Arthritis: The Application of Proteomics Technologies. Front Med (Lausanne) 2021; 8:681172. [PMID: 34869404 PMCID: PMC8635007 DOI: 10.3389/fmed.2021.681172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriatic disease (PsD) is a spectrum of diseases that affect both skin [cutaneous psoriasis (PsC)] and musculoskeletal features [psoriatic arthritis (PsA)]. A considerable number of patients with PsC have asymptomatic synovio-entheseal inflammations, and approximately one-third of those eventually progress to PsA with an enigmatic mechanism. Published studies have shown that early interventions to the very early-stage PsA would effectively prevent substantial bone destructions or deformities, suggesting an unmet goal for exploring early PsA biomarkers. The emergence of proteomics technologies brings a complete view of all involved proteins in PsA transitions, offers a unique chance to map all potential peptides, and allows a direct head-to-head comparison of interaction pathways in PsC and PsA. This review summarized the latest development of proteomics technologies, highlighted its application in PsA biomarker discovery, and discussed the possible clinical detectable PsA risk factors in patients with PsC.
Collapse
Affiliation(s)
- Fei Qi
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Yaqi Tan
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Amin Yao
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Xutong Yang
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Yanling He
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
12
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Analytical approaches to assess metabolic changes in psoriasis. J Pharm Biomed Anal 2021; 205:114359. [PMID: 34509137 DOI: 10.1016/j.jpba.2021.114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Psoriasis is one of the most common human skin diseases, although its development is not limited to one tissue, but is associated with autoimmune reactions throughout the body. Overproduction of pro-inflammatory cytokines and growth factors systemically stimulates the proliferation of skin cells, which manifests as excessive exfoliation of the epidermis, and/or arthritis, as well as other comorbidities such as insulin resistance, metabolic syndrome, hypertension, and depression. Thus, there is a great need for a thorough analysis of the pathophysiology of psoriatic patients, including classical methods, such as spectrophotometry, chromatography, or Western blot, and also novel omics approaches such as lipidomics and proteomics. Moreover, the extensive pathophysiology forces increased research examining biological changes in both skin cells, and systemically. A wide range of techniques involved in lipidomic research based on a combination of mass spectrometry and different types of chromatography (RP-LC-QTOF-MS/MS, HILIC-QTOF-MS/MS or RP-LC-QTRAP-MS/MS), have allowed comprehensive assessment of lipid modification in psoriatic skin and provided new insight into the role of lipids and their mechanism of action in psoriasis. Moreover, proteomic analysis using gel-nanoLC-OrbiTrap-MS/MS, as well as MALDI-TOF/TOF techniques facilitates the description of panels of enzymes involved in lipidome modifications, and the response of the endocannabinoid system to metabolic changes. Psoriasis is known to alter the expression of proteins that are involved in the inflammatory and antioxidant response, as well as protein biosynthesis, degradation, as well as cell proliferation and apoptosis. Knowledge of changes in the lipidomic and proteomic profile will not only allow the understanding of psoriasis pathophysiology, but also facilitate proper and early diagnosis and effective pharmacotherapy.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| |
Collapse
|
13
|
Grivas A, Fragoulis G, Garantziotis P, Banos A, Nikiphorou E, Boumpas D. Unraveling the complexities of psoriatic arthritis by the use of -Omics and their relevance for clinical care. Autoimmun Rev 2021; 20:102949. [PMID: 34509654 DOI: 10.1016/j.autrev.2021.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
-Omic technologies represent a novel approach to unravel ill-defined aspects of psoriatic arthritis (PsA). Large-scale information can be acquired from analysis of affected tissues in PsA via high-throughput studies in the domains of genomics, transcriptomics, epigenetics, proteomics and metabolomics. This is a critical overview of the current knowledge of -omics in PsA, with emphasis on the pathophysiological insights of diagnostic and therapeutic relevance, the advent of novel biomarkers and their potential use for precision medicine in PsA.
Collapse
Affiliation(s)
- Alexandros Grivas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| | - George Fragoulis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, "Laiko" General Hospital, Athens, Greece
| | - Panagiotis Garantziotis
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; Division of Immunology and Rheumatology, Hannover Medical University, 30,625 Hannover, Germany
| | - Aggelos Banos
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, King's College London, King's Hospital, London, United Kingdom
| | - Dimitrios Boumpas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
14
|
Pennington SR, FitzGerald O. Early Origins of Psoriatic Arthritis: Clinical, Genetic and Molecular Biomarkers of Progression From Psoriasis to Psoriatic Arthritis. Front Med (Lausanne) 2021; 8:723944. [PMID: 34485351 PMCID: PMC8416317 DOI: 10.3389/fmed.2021.723944] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Greater than 90% of patients with psoriatic arthritis (PsA) first develop their arthritis on a background of known psoriasis (Pso). Thus, having skin/nail Pso certainly is an important risk factor for PsA but as PsA develops in <30% of those affected with Pso, the presence of Pso alone is insufficient as a means of identifying which patients with Pso will develop PsA. It is hoped that with further molecular assessment of Pso patients who do not have any evidence of inflammatory musculoskeletal disease compared to those with early PsA features, that the “at risk” profile of Pso patients destined to develop PsA can be refined such that disease prevention studies can be designed and a new era of treatment for PsA can emerge. In this article, the early stages in the development of PsA are outlined and what is currently known about clinical features, genetic factors and soluble or tissue biomarkers associated with the development of PsA in patients with Pso is reviewed in detail. Finally, proposals are outlined regarding the approaches required in order to address this important research area.
Collapse
Affiliation(s)
- Stephen R Pennington
- Conway Institute for Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Oliver FitzGerald
- Conway Institute for Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Bolt JW, van Ansenwoude CMJ, Hammoura I, van de Sande MG, van Baarsen LGM. Translational Research Studies Unraveling the Origins of Psoriatic Arthritis: Moving Beyond Skin and Joints. Front Med (Lausanne) 2021; 8:711823. [PMID: 34485340 PMCID: PMC8415974 DOI: 10.3389/fmed.2021.711823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with psoriatic arthritis (PsA) are suffering from a decreased quality of life despite currently available treatments. In the latest years, novel therapies targeting the IL-17/IL-23 and TNF pathways improved clinical outcome. Despite this, remission of disease is not achieved in a considerable group of patients, continuous treatment is very often required to reach clinical remission, and prevention of PsA in patients with psoriasis (PsO) is currently impossible. A better understanding of PsA pathogenesis is required to develop novel treatment strategies that target inflammation and destruction more effectively and at an early stage of the disease, or even before clinically manifest disease. The skin is considered as one of the sites of onset of immune activation, triggering the inflammatory cascade in PsA. PsO develops into PsA in 30% of the PsO patients. Influenced by environmental and genetic factors, the inflammatory process in the skin, entheses, and/or gut may evolve into synovial tissue inflammation, characterized by influx of immune cells. The exact role of the innate and adaptive immune cells in disease pathogenesis is not completely known. The involvement of activated IL-17A+ T cells could implicate early immunomodulatory events generated in lymphoid organs thereby shaping the pathogenic inflammatory response leading to disease. In this perspective article, we provide the reader with an overview of the current literature regarding the immunological changes observed during the earliest stages of PsA. Moreover, we will postulate future areas of translational research aimed at increasing our knowledge on the molecular mechanisms driving disease development, which will aid the identification of novel potential therapeutic targets to limit the progression of PsA.
Collapse
Affiliation(s)
- Janne W. Bolt
- Department of Rheumatology & Clinical Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Chaja M. J. van Ansenwoude
- Department of Rheumatology & Clinical Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Ihsan Hammoura
- Department of Rheumatology & Clinical Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Marleen G. van de Sande
- Department of Rheumatology & Clinical Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Lisa G. M. van Baarsen
- Department of Rheumatology & Clinical Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
16
|
Zhu J, Han L, Liu R, Zhang Z, Huang Q, Fang X, Yang K, Huang G, Zheng Z, Yawalkar N, Deng H, Yan K. Identification of proteins associated with development of psoriatic arthritis in peripheral blood mononuclear cells: a quantitative iTRAQ-based proteomics study. J Transl Med 2021; 19:331. [PMID: 34344401 PMCID: PMC8336315 DOI: 10.1186/s12967-021-03006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background Biomarkers for distinguishing psoriatic arthritis (PsA) from psoriasis without arthritis (PsO) are still lacking. Methods We applied isobaric tags for relative and absolute quantification (iTRAQ) and LC–MS/MS to analyze the proteome profile of peripheral blood mononuclear cells (PBMCs) collected from patients with PsO, patients with PsA, and healthy controls. Bioinformatics analysis and western blotting were performed to identify and validate differentially expressed proteins. Results We identified 389, 199, 291, and 60 significantly differentially expressed proteins (adj.p < 0.05) in the comparison of all psoriatic patients versus healthy controls, PsO group versus healthy controls, PsA group versus healthy controls, and PsA group versus PsO group, respectively. Among these proteins, 14 proteins may represent promising biomarkers for PsA: SIRT2, NAA50, ARF6, ADPRHL2, SF3B6, SH3KBP1, UBA3, SCP2, RPS5, NUDT5, NCBP1, SYNE1, NDUFB7, HTATSF1. Furthermore, western blotting confirmed that SIRT2 expression was significantly higher in PBMCs from PsA patients than PsO and healthy controls, and was negatively correlated with the phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK; p = 0.006, r = − 0.582). Conclusions This pilot study provided a broad characterization of the proteome of PBMCs in PsA as compared to PsO and healthy controls, which may help to provide prospective strategies for PsA diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03006-x.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Yang
- Department of Information, Huashan Hospital, Fudan University, Shanghai, China
| | - Guiqin Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhizhong Zheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hui Deng
- Department of Dermatology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Mulder MLM, van Hal TW, Wenink MH, Koenen HJPM, van den Hoogen FHJ, de Jong EMGJ, van den Reek JMPA, Vriezekolk JE. Clinical, laboratory, and genetic markers for the development or presence of psoriatic arthritis in psoriasis patients: a systematic review. Arthritis Res Ther 2021; 23:168. [PMID: 34127053 PMCID: PMC8201808 DOI: 10.1186/s13075-021-02545-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Twenty to thirty percent of psoriasis (Pso) patients will develop psoriatic arthritis (PsA). Detection of Pso patients that are (at risk for) developing PsA is essential to prevent structural damage. We conducted a systematic search of five bibliographic databases, up to May 2020. We searched for studies assessing markers (clinical, laboratory, genetic) associated with the development or presence of PsA in Pso patients. Study selection and quality assessment of the included studies was performed, followed by a qualitative best evidence synthesis to determine the level of evidence for a marker and its association with concomitant/developing PsA in Pso. Overall, 259 possible markers were identified in 119 studies that met the inclusion criteria. Laboratory markers related to inflammation and bone metabolism reached a strong level of evidence for the association (not prediction) of PsA in Pso. Only CXCL10 showed strong evidence for a positive predictive value for PsA in Pso. The importance of timely detecting PsA in a Pso population, and finding more (bio)markers contributing to early detection, remains high.
Collapse
Affiliation(s)
- Michelle L M Mulder
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands. .,Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tamara W van Hal
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark H Wenink
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Elke M G J de Jong
- Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juul M P A van den Reek
- Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna E Vriezekolk
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands
| |
Collapse
|
18
|
|
19
|
Zhou Y, Wang P, Yan BX, Chen XY, Landeck L, Wang ZY, Li XX, Zhang J, Zheng M, Man XY. Quantitative Proteomic Profile of Psoriatic Epidermis Identifies OAS2 as a Novel Biomarker for Disease Activity. Front Immunol 2020; 11:1432. [PMID: 32849499 PMCID: PMC7410923 DOI: 10.3389/fimmu.2020.01432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a common chronic inflammatory systemic disease. Epidermal proteins are considered to be important in maintaining skin barrier function, innate immunity, and inflammation. To define more possible roles of the epidermis in the pathogenesis of psoriasis, quantified proteomic analysis was used to screen and analyze the differentially expressed epidermal proteins between 16 psoriasis patients and 15 healthy controls. Upregulated differential expression proteins (DEPs) include several significant functional protein clusters, including antimicrobial peptides (AMPs) and antiviral proteins (AVPs). The levels of 2–5-oligoadenylate synthase 2 (OAS2) in both epidermis and serum levels were significantly elevated in psoriasis and were also positively correlated with Psoriasis Area Severity Index (PASI) scores and Body Surface Area (BSA) scores. Moreover, OAS2 expression in psoriatic skin significantly decreased after IL-17R mono-antibody treatment. It has been clarified that inflamed keratinocytes were the main source of abnormally increased OAS2 in psoriasis skin by immunofluorescence and primary cell cultures. Keratinocyte-derived OAS2 can be induced by not only IFNβ, but also psoriasis associated cytokines like IL-17A and IL-6. This study revealed that AMPs and AVPs are two important functional protein clusters altering innate immune in psoriatic epidermis. OAS2 is a novel potential sensitive biomarker, which could predict the severity and activity of psoriasis, and could also be used as an indicator to evaluate or monitor the efficacy of clinical treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Ernst von Bergmann General Hospital, Teaching Hospital of Charité, University Medicine Berlin, Humboldt University Berlin, Potsdam, Germany
| | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Castillo R, Scher JU. Not your average joint: Towards precision medicine in psoriatic arthritis. Clin Immunol 2020; 217:108470. [PMID: 32473975 DOI: 10.1016/j.clim.2020.108470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Precision medicine, propelled by advances in multi-omics methods and analytics, aims to revolutionize patient care by using clinically-actionable molecular markers to guide diagnostic and therapeutic decisions. We describe the applications of precision medicine in risk stratification, drug selection, and treatment response prediction in psoriatic arthritis, for which targeted, personalized approaches are steadily emerging.
Collapse
Affiliation(s)
- Rochelle Castillo
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, United States of America
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, United States of America; Psoriatic Arthritis Center, New York University School of Medicine, New York, NY, United States of America.
| |
Collapse
|
21
|
Affiliation(s)
- Vinod Chandran
- Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
22
|
Gonnet J, Poncelet L, Meriaux C, Gonçalves E, Weiss L, Tchitchek N, Pedruzzi E, Soria A, Boccara D, Vogt A, Bonduelle O, Hamm G, Ait-Belkacem R, Stauber J, Fournier I, Wisztorski M, Combadiere B. Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine. J Proteomics 2020; 216:103670. [PMID: 31991189 DOI: 10.1016/j.jprot.2020.103670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
The skin plays a crucial role in host defences against microbial attack and the innate cells must provide the immune system with sufficient information to organize these defences. This unique feature makes the skin a promising site for vaccine administration. Although cellular innate immune events during vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the epidermis, the most relevant networks were associated with activation of antigen-presenting cells and related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin innate reaction. SIGNIFICANCE: To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine injection on skin tissue. We identified early molecular networks involved biological functions such cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in the epidermis and dermis, then could be used as early indicator of success in immunization.
Collapse
Affiliation(s)
- Jessica Gonnet
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lauranne Poncelet
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France; ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Celine Meriaux
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Elena Gonçalves
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lina Weiss
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Nicolas Tchitchek
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, 92265 Fontenay-aux-Roses, France
| | - Eric Pedruzzi
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Angele Soria
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, 4 rue de la Chine, Hôpitaux Universitaire Est Parisien (HUEP), Assistance Publique Hôpitaux de Paris (APHP), 75020 Paris, France
| | - David Boccara
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de chirurgie plastique reconstructrice, esthétique, centre des brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Annika Vogt
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Olivia Bonduelle
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Gregory Hamm
- ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | | | | | - Isabelle Fournier
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Behazine Combadiere
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.
| |
Collapse
|
23
|
Lyu S, Ding R, Liu P, OuYang H, Feng Y, Rao Y, Yang S. LC-MS Analysis of Serum for the Metabolomic Investigation of the Effects of Pulchinenoside b4 Administration in Monosodium Urate Crystal-Induced Gouty Arthritis Rat Model. Molecules 2019; 24:molecules24173161. [PMID: 31480258 PMCID: PMC6749452 DOI: 10.3390/molecules24173161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Gouty arthritis (GA) is commonly caused by deposition of monosodium urate (MSU) crystals within the joint capsule, bursa, cartilage, bone, or other periarticular tissues after chronic hyperuricemia. Clinically, GA is characterized by acute episodes of joint inflammation, which is most frequently encountered in the major joints, and also has a significant impact on quality of life. Pulchinenoside b4(P-b4) has a wide range of biological activities, including antitumor, anti-inflammatory, antiviral and immunomodulatory activities. Currently, the anti-GA activity and metabolomic profiles after being treated by P-b4 have not been reported. In this paper, for the first time, we have performed a non-targeted metabolomics analysis of serum obtained from an MSU crystal-induced GA rat model intervened by P-b4, using ultra-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. In this study, the main pharmacodynamics of different dosing methods and dosages of P-b4 was firstly investigated. Results have shown that P-b4 possesses high anti-inflammatory activity. These results demonstrated changes in serum metabolites with 32 potential biomarkers. Arachidonic acid, sphingolipid, and glycerophospholipid metabolism are considered to be the most relevant metabolic pathway with P-b4 treatment effect in this study. Moreover, the changes of metabolites and the self-extinction of model effects within 24 h reveals important information for GA diagnostic criteria: The regression of clinical symptoms or the decline of some biochemical indicators cannot be regarded as the end point of GA treatment. Furthermore, our research group plans to conduct further metabolomics research on the clinical course of GA.
Collapse
Affiliation(s)
- Shang Lyu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Ruowen Ding
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Hui OuYang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Yi Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
24
|
Mahendran SM, Keystone EC, Krawetz RJ, Liang K, Diamandis EP, Chandran V. Elucidating the endogenous synovial fluid proteome and peptidome of inflammatory arthritis using label-free mass spectrometry. Clin Proteomics 2019; 16:23. [PMID: 31160890 PMCID: PMC6542032 DOI: 10.1186/s12014-019-9243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory arthritis (IA) is an immunological disorder in which loss of immune tolerance to endogenous self-antigens perpetuates synovitis and eventual destruction of the underlying cartilage and bone. Pathological changes in the joint are expected to be represented by synovial fluid (SF) proteins and peptides. In the present study, a mass spectrometry-based approach was utilized for the identification of key protein and peptide mediators of IA. Methods Age-matched SF samples from 10 rheumatoid arthritis patients, 10 psoriatic arthritis patients and 10 cadaveric controls were subjected to an integrated proteomic and peptidomic protocol using liquid chromatography tandem mass spectrometry. Significant differentially abundant proteins and peptides were identified between cohorts according to the results of a Mann-Whitney U test coupled to the Benjamini-Hochberg correction for multiple hypothesis testing. Fold change ratios were computed for each protein and peptide according to their log-transformed extracted ion current. Pathway analysis and antimicrobial peptide (AMP) prediction were conducted to clarify the pathophysiological relevance of identified proteins and peptides to IA. Results We determined that 144 proteins showed significant differential abundance between the IA and control SF proteomes, of which 11 protein candidates were selected for future follow-up studies. Similar analyses applied to our peptidomic data identified 15 peptide sequences, originating from 4 protein precursors, to have significant differential abundance in IA compared to the control SF peptidome. Pathway enrichment analysis of the IA SF peptidome along with AMP prediction suggests a possible mechanistic role of microbes in eliciting an immune response which drives the development of IA. Conclusions The discovery-phase data generated herein has provided a basis for the identification of candidates with the greatest potential to serve as novel serum biomarkers specific to inflammatory arthritides. Moreover, these findings facilitate the understanding of possible disease mechanisms specific to each subtype.
Collapse
Affiliation(s)
- Shalini M Mahendran
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
| | - Edward C Keystone
- 3Department of Rheumatology, Mount Sinai Hospital, Toronto, ON Canada
| | - Roman J Krawetz
- 4McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB Canada.,5Department of Surgery, University of Calgary, Calgary, AB Canada.,6Department of Anatomy and Cell Biology, University of Calgary, Calgary, AB Canada
| | - Kun Liang
- 7Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON Canada
| | - Eleftherios P Diamandis
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada.,8Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Vinod Chandran
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,9Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada.,10Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON Canada.,11Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
25
|
Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat Rev Rheumatol 2019; 15:153-166. [DOI: 10.1038/s41584-019-0175-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Cretu D, Gao L, Liang K, Soosaipillai A, Diamandis EP, Chandran V. Differentiating Psoriatic Arthritis From Psoriasis Without Psoriatic Arthritis Using Novel Serum Biomarkers. Arthritis Care Res (Hoboken) 2019; 70:454-461. [PMID: 28586166 DOI: 10.1002/acr.23298] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/01/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE There is a high prevalence of undiagnosed psoriatic arthritis (PsA) in patients with psoriasis. Identifying soluble biomarkers for PsA will help in screening psoriasis patients for appropriate rheumatology referral. We therefore aimed to investigate whether serum levels of novel markers previously discovered by quantitative mass spectrometric analysis of synovial fluid and skin biopsies performs better than the C-reactive protein (CRP) level in differentiating PsA patients from those with psoriasis without PsA (PsC). METHODS In this case-control study, serum samples were obtained from 100 subjects with PsA, 100 with PsC, and 100 healthy controls. Patients with PsA and PsC were group matched for age, sex, psoriasis duration, and Psoriasis Area and Severity Index and were not currently receiving biologic treatment. Using enzyme-linked immunosorbent assay, 4 high-priority markers (Mac-2-binding protein [M2BP], CD5-like protein [CD5L], myeloperoxidase [MPO], and integrin β5 [ITGβ5]), as well as previously established markers (matrix metalloproteinase 3 [MMP-3] and CRP level) were assayed. Data were analyzed using logistic regression. Receiver operating characteristic (ROC) curves were plotted. RESULTS In comparisons to controls, CD5L, ITGβ5, M2BP, MPO, MMP-3, and CRP level were independently associated with PsA, while only CD5L, M2BP, and MPO were independently associated with PsC alone. In comparisons to PsC, ITGβ5, M2BP, and CRP level were independently associated with PsA. ROC analysis of this model shows an area under the curve (AUC) of 0.85 (95% confidence interval [95% CI] 0.80-0.90). The model that included CRP level alone had an AUC of 0.71 (95% CI 0.64-0.78). CONCLUSION CD5L, ITGβ5, M2BP, MPO, MMP-3, and CRP level are markers for PsA. The combination of ITGβ5, M2BP, and CRP level differentiates PsA from PsC, and performs better than CRP level alone.
Collapse
Affiliation(s)
| | - Lisa Gao
- University of Waterloo, Waterloo, Ontario, Canada
| | - Kun Liang
- University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Vinod Chandran
- Toronto Western Hospital, Krembil Research Institute, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
28
|
Abraham S, Barton A, Eder L, Lim A, McGonagle D, McHugh N, Pennington S, Sengupta R, Siebert S, Bowness P, Schafer PH, Cullen E, FitzGerald O. Advancing research paradigms and pathophysiological pathways in psoriatic arthritis and ankylosing spondylitis: Proceedings of the 2017 Platform for the Exchange of Expertise and Research (PEER) meeting. Semin Arthritis Rheum 2018; 48:1005-1013. [PMID: 30415944 DOI: 10.1016/j.semarthrit.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Sonya Abraham
- NIHR/Wellcome Trust Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK.
| | - Anne Barton
- Centre for Musculoskeletal Research, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Lihi Eder
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Adrian Lim
- Charing Cross Hospital, Imperial College London, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| | - Neil McHugh
- Royal National Hospital for Rheumatic Diseases and Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Stephen Pennington
- St. Vincent's University Hospital and Conway Institute for Biomolecular Research, University College Dublin School of Medicine, Dublin, Ireland
| | - Raj Sengupta
- Royal National Hospital for Rheumatic Diseases, Bath, UK
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, Oxford OX3 7LD, UK
| | | | | | - Oliver FitzGerald
- St. Vincent's University Hospital and Conway Institute for Biomolecular Research, University College Dublin School of Medicine, Dublin, Ireland
| |
Collapse
|
29
|
Aggarwal D, Arumalla N, Jethwa H, Abraham S. The use of biomarkers as a tool for novel psoriatic disease drug discovery. Expert Opin Drug Discov 2018; 13:875-887. [PMID: 30124339 DOI: 10.1080/17460441.2018.1508206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Psoriatic disease is a relatively new term which encompasses psoriatic arthritis, psoriasis, and associated comorbidities. In this heterogeneous condition, the study of biomarkers is necessary to direct best therapy. Resulting in significant disability and socioeconomic burden, recent recommendations stress the need for tight control in psoriatic disease. Areas covered: The authors outline recent advances in the understanding of psoriatic disease pathogenesis which has highlighted multiple biomarkers that have been pursued as drug targets with varying degrees of success. Current drugs targeting biomarkers and therapies in development are evaluated. The methods of biomarker discovery through genomics, transcriptomics, proteomics, metabolomics, and study of the microbiome are also discussed. Expert opinion: Targeting biomarkers for therapeutic benefit appears to a promising field with multiple success stories, notably those associated with signaling through T-helper-17 cells. The use of genomics, transcriptomics, proteomics, and more recently metabolomics will help individualize targeted biomarker therapies, assist in monitoring therapeutic success, and ultimately yield novel therapeutic targets. Advances in the development of novel biologic molecules targeting more than one cytokine may offer additional gains in therapeutic response.
Collapse
Affiliation(s)
- Dinesh Aggarwal
- a Department of Infectious Diseases , Chelsea and Westminster Hospital , London , UK
| | | | - Hannah Jethwa
- c Department of Rheumatology , Ealing Hospital , Southall , UK
| | - Sonya Abraham
- d Department of Rheumatology , Hammersmith Hospital , London , UK.,e Department of Rheumatology , Imperial College Healthcare NHS Trust , London , UK
| |
Collapse
|
30
|
Gęgotek A, Domingues P, Wroński A, Wójcik P, Skrzydlewska E. Proteomic plasma profile of psoriatic patients. J Pharm Biomed Anal 2018; 155:185-193. [DOI: 10.1016/j.jpba.2018.03.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
|
31
|
Mahendran SM, Chandran V. Exploring the Psoriatic Arthritis Proteome in Search of Novel Biomarkers. Proteomes 2018; 6:proteomes6010005. [PMID: 29364831 PMCID: PMC5874764 DOI: 10.3390/proteomes6010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Psoriatic arthritis (PsA) is an inflammatory arthritis which develops in up to one-third of patients suffering from the cutaneous disorder, psoriasis. The complex and heterogeneous nature of PsA renders it difficult to diagnose, leading to poor outcomes and, therefore, warrants an examination into soluble biomarkers, which may facilitate early detection of the disease. Protein biomarkers are a dynamic resource of pathophysiological information able to provide an immediate reflection of pathological changes caused by disease. Investigations of the serum and synovial fluid of PsA patients has provided new insights into the molecular basis of this disease and led to the identification of sensitive diagnostic and prognostic biomarkers. The collection of novel PsA biomarkers identified through proteomic studies has been reviewed below.
Collapse
Affiliation(s)
- Shalini M Mahendran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada.
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada.
- Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 1M8, Canada.
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5T 1A1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON M5T 1A1, Canada.
| |
Collapse
|
32
|
Clinical Features of Psoriatic Arthritis: a Comprehensive Review of Unmet Clinical Needs. Clin Rev Allergy Immunol 2017; 55:271-294. [DOI: 10.1007/s12016-017-8630-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: A systematic review and critical appraisal. J Autoimmun 2017; 78:29-38. [DOI: 10.1016/j.jaut.2016.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
|
34
|
Uzozie AC, Selevsek N, Wahlander A, Nanni P, Grossmann J, Weber A, Buffoli F, Marra G. Targeted Proteomics for Multiplexed Verification of Markers of Colorectal Tumorigenesis. Mol Cell Proteomics 2017; 16:407-427. [PMID: 28062797 DOI: 10.1074/mcp.m116.062273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Targeted proteomic methods can accelerate the verification of multiple tumor marker candidates in large series of patient samples. We utilized the targeted approach known as selected/multiple reaction monitoring (S/MRM) to verify potential protein markers of colorectal adenoma identified by our group in previous transcriptomic and quantitative shotgun proteomic studies of a large cohort of precancerous colorectal lesions. We developed SRM assays to reproducibly detect and quantify 25 (62.5%) of the 40 selected proteins in an independent series of precancerous and cancerous tissue samples (19 adenoma/normal mucosa pairs; 17 adenocarcinoma/normal mucosa pairs). Twenty-three proteins were significantly up-regulated (n = 17) or downregulated (n = 6) in adenomas and/or adenocarcinomas, as compared with normal mucosa (linear fold changes ≥ ±1.3, adjusted p value <0.05). Most changes were observed in both tumor types (up-regulation of ANP32A, ANXA3, SORD, LDHA, LCN2, NCL, S100A11, SERPINB5, CDV3, OLFM4, and REG4; downregulation of ARF6 and PGM5), and a five-protein biomarker signature distinguished neoplastic tissue from normal mucosa with a maximum area under the receiver operating curve greater than 0.83. Other changes were specific for adenomas (PPA1 and PPA2 up-regulation; KCTD12 downregulation) or adenocarcinoma (ANP32B, G6PD, RCN1, and SET up-regulation; downregulated AKR1B1, APEX1, and PPA1). Some changes significantly correlated with a few patient- or tumor-related phenotypes. Twenty-two (96%) of the 23 proteins have a potential to be released from the tumors into the bloodstream, and their detectability in plasma has been previously reported. The proteins identified in this study expand the pool of biomarker candidates that can be used to develop a standardized precolonoscopy blood test for the early detection of colorectal tumors.
Collapse
Affiliation(s)
| | - Nathalie Selevsek
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Asa Wahlander
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Paolo Nanni
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Achim Weber
- ¶Institute of Surgical Pathology, University of Zurich, Switzerland
| | - Federico Buffoli
- ‖ Gastroenterology and Endoscopy Unit, Hospital of Cremona, Italy
| | - Giancarlo Marra
- From the ‡Institute of Molecular Cancer Research, University of Zurich, Switzerland;
| |
Collapse
|
35
|
Yu Y, Sikorski P, Smith M, Bowman-Gholston C, Cacciabeve N, Nelson KE, Pieper R. Comprehensive Metaproteomic Analyses of Urine in the Presence and Absence of Neutrophil-Associated Inflammation in the Urinary Tract. Theranostics 2017; 7:238-252. [PMID: 28042331 PMCID: PMC5197061 DOI: 10.7150/thno.16086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/28/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation in the urinary tract results in a urinary proteome characterized by a high dynamic range of protein concentrations and high variability in protein content. This proteome encompasses plasma proteins not resorbed by renal tubular uptake, renal secretion products, proteins of immune cells and erythrocytes derived from trans-urothelial migration and vascular leakage, respectively, and exfoliating urothelial and squamous epithelial cells. We examined how such proteins partition into soluble urine (SU) and urinary pellet (UP) fractions by analyzing 33 urine specimens 12 of which were associated with a urinary tract infection (UTI). Using mass spectrometry-based metaproteomic approaches, we identified 5,327 non-redundant human proteins, 2,638 and 4,379 of which were associated with SU and UP fractions, respectively, and 1,206 non-redundant protein orthology groups derived from pathogenic and commensal organisms of the urogenital tract. Differences between the SU and UP proteomes were influenced by local inflammation, supported by respective comparisons with 12 healthy control urine proteomes. Clustering analyses showed that SU and UP fractions had proteomic signatures discerning UTIs, vascular injury, and epithelial cell exfoliation from the control group to varying degrees. Cases of UTI revealed clusters of proteins produced by activated neutrophils. Network analysis supported the central role of neutrophil effector proteins in the defense against invading pathogens associated with subsequent coagulation and wound repair processes. Our study expands the existing knowledge of the urinary proteome under perturbed conditions, and should be useful as reference dataset in the search of biomarkers.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Patricia Sikorski
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Madeline Smith
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Cynthia Bowman-Gholston
- Quest Diagnostics at Shady Grove Adventist Hospital, 9901 Medical Center Drive, Rockville 20850, MD
| | - Nicolas Cacciabeve
- Advanced Pathology Associates LLC at Shady Grove Adventist Hospital, 9901 Medical Center Drive, Rockville 20850, MD
| | - Karen E. Nelson
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Rembert Pieper
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| |
Collapse
|
36
|
Maternal Urine Screening for Down Syndrome: Past Studies and Future Perspectives. JOURNAL OF FETAL MEDICINE 2016. [DOI: 10.1007/s40556-016-0107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Abstract
This article reviews recent advances in psoriatic arthritis (PsA) over the past several years with emphasis on early diagnosis, better understanding of pathogenesis, and new therapeutic approaches. Early diagnosis is important, since people who present late do not fare as well. There are a number of clinical, laboratory, and ultrasound features that can help identify patients destined to develop PsA, and several screening tools have been developed. It is recognized that genetic and epigenetic factors, as well as T cells and cytokines, play a role in the pathogenesis of PsA, and several targets have been identified for therapeutic interventions. New therapies have been developed and tested in PsA and have been found to be highly effective for both skin and joint manifestations of the disease. The expectation is that, in the future, PsA patients will be treated early and more aggressively and that there will not be significant progression of joint damage. Moreover, with effective treatment of the skin and joint disease and management of risk factors for the comorbidities, we can expect to reduce their occurrence and further reduce the excess mortality and reduced quality of life and function in these patients.
Collapse
Affiliation(s)
- Dafna D Gladman
- Psoriatic Arthritis Program, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, Toronto, Ontario, M5T 2S8, Canada
| |
Collapse
|
38
|
Dutkiewicz EP, Hsieh KT, Wang YS, Chiu HY, Urban PL. Hydrogel Micropatch and Mass Spectrometry-Assisted Screening for Psoriasis-Related Skin Metabolites. Clin Chem 2016; 62:1120-8. [PMID: 27324733 DOI: 10.1373/clinchem.2016.256396] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Psoriasis is a chronic, immune-mediated inflammatory skin disease. Screening skin metabolites could unravel the pathophysiology of psoriasis and provide new diagnostic approaches. Due to the lack of suitable methodologies for collecting scarce amounts of skin excretions, the psoriatic skin metabolome has not been extensively studied. METHODS We implemented biocompatible hydrogel micropatch probes combined with mass spectrometry to investigate the skin metabolome. This noninvasive approach was applied to examine samples obtained from 100 psoriatic patients and 100 healthy individuals. We also developed custom data treatment tools and used chemometric and statistical tools to reveal the alterations in the skin metabolome caused by psoriasis. RESULTS The proposed methodology enabled us to capture alterations in the composition of skin excretions caused by the disease. Chemometric analysis revealed the major differences between the metabolomes of psoriatic skin and healthy skin. Several polar metabolites were positively (choline and glutamic acid) or negatively (urocanic acid and citrulline) correlated with the plaque severity scores. The amounts of these metabolites in the excretions sampled from psoriatic skin were significantly different (P < 0.001) from the excretions sampled from healthy skin. The role of biological variability and various confounding factors, which might affect the skin metabolome, was also investigated. CONCLUSIONS Sampling lesional and healthy skin with the hydrogel micropatch probes and subsequent direct mass spectrometry scanning provided information on the alterations in the skin metabolome caused by psoriasis, increasing the understanding of the complex pathophysiology of this disease.
Collapse
Affiliation(s)
- Ewelina P Dutkiewicz
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Ta Hsieh
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Sheng Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsien-Yi Chiu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan; Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan;
| | - Pawel L Urban
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
39
|
Reindl J, Pesek J, Krüger T, Wendler S, Nemitz S, Muckova P, Büchler R, Opitz S, Krieg N, Norgauer J, Rhode H. Proteomic biomarkers for psoriasis and psoriasis arthritis. J Proteomics 2016; 140:55-61. [DOI: 10.1016/j.jprot.2016.03.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
|
40
|
Vachani A, Hammoud Z, Springmeyer S, Cohen N, Nguyen D, Williamson C, Starnes S, Hunsucker S, Law S, Li XJ, Porter A, Kearney P. Clinical Utility of a Plasma Protein Classifier for Indeterminate Lung Nodules. Lung 2015; 193:1023-7. [PMID: 26376647 PMCID: PMC4651976 DOI: 10.1007/s00408-015-9800-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
Abstract
Evaluation of indeterminate pulmonary nodules is a complex challenge. Most are benign but frequently undergo invasive and costly procedures to rule out malignancy. A plasma protein classifier was developed that identifies likely benign nodules that can be triaged to CT surveillance to avoid unnecessary invasive procedures. The clinical utility of this classifier was assessed in a prospective-retrospective analysis of a study enrolling 475 patients with nodules 8-30 mm in diameter who had an invasive procedure to confirm diagnosis at 12 sites. Using this classifier, 32.0 % (CI 19.5-46.7) of surgeries and 31.8 % (CI 20.9-44.4) of invasive procedures (biopsy and/or surgery) on benign nodules could have been avoided. Patients with malignancy triaged to CT surveillance by the classifier would have been 24.0 % (CI 19.2-29.4). This rate is similar to that described in clinical practices (24.5 % CI 16.2-34.4). This study demonstrates the clinical utility of a non-invasive blood test for pulmonary nodules.
Collapse
Affiliation(s)
- Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania/Abramson Research Center, 3615 Civic Center Boulevard, Suite 1016E, Philadelphia, PA, 19104, USA
| | - Zane Hammoud
- Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI, 48202, USA
| | - Steven Springmeyer
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA
| | - Neri Cohen
- Greater Baltimore Medical Center, 6569 North Charles Street, Suite 701, Baltimore, MD, 21204, USA
| | - Dao Nguyen
- Sylvester Comprehensive Cancer Center, University of Miami Hospital & Clinics, 1550 NW 10th Avenue, Fox Building, Suite 308, Office 314, Miami, FL, 33136, USA
| | - Christina Williamson
- Department of Thoracic and Cardiovascular Surgery, Lahey Hospital & Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Sandra Starnes
- University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0562, USA
| | - Stephen Hunsucker
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA
| | - Scott Law
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA
| | - Xiao-Jun Li
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA
| | - Alexander Porter
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA
| | - Paul Kearney
- Integrated Diagnostics, 818 Stewart St., Suite 1101, Seattle, WA, 98101, USA.
| |
Collapse
|
41
|
|