1
|
Huang SY, Hsieh PY, Chung CJ, Chou CM, He JL. Nanoarchitectonics for Ultrathin Gold Films Deposited on Collagen Fabric by High-Power Impulse Magnetron Sputtering. NANOMATERIALS 2022; 12:nano12101627. [PMID: 35630849 PMCID: PMC9143808 DOI: 10.3390/nano12101627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles conjugated with collagen molecules and fibers have been proven to improve structure strength, water and enzyme degradation resistance, cell attachment, cell proliferation, and skin wound healing. In this study, high-power impulse magnetron sputtering (HiPIMS) was used to deposit ultrathin gold films (UTGF) and discontinuous island structures on type I collagen substrates. A long turn-off time of duty cycle and low chamber temperature of HiPIMS maintained substrate morphology. Increasing the deposition time from 6 s to 30 s elevated the substrate surface coverage by UTGF up to 91.79%, as observed by a field emission scanning electron microscope. X-ray diffractometry analysis revealed signature low and wide peaks for Au (111). The important surface functional groups and signature peaks of collagen substrate remained unchanged according to Fourier transform infrared spectroscopy results. Multi-peak curve fitting of the Amide I spectrum revealed the non-changed protein secondary structure of type I collagen, which mainly consists of α-helix. Atomic force microscopy observation showed that the roughness average value shifted from 1.74 to 4.17 nm by increasing the deposition time from 13 s to 77 s. The uneven surface of collagen substrate made quantification of thin film thickness by AFM difficult. Instead, UTGF thickness was measured using simultaneously deposited glass specimens placed in an HiPIMS chamber with collagen substrates. Film thickness was 3.99 and 10.37 nm at deposition times of 13 and 77 s, respectively. X-ray photoelectron spectroscopy showed preserved substrate elements on the surface. Surface water contact angle measurement revealed the same temporary hydrophobic behavior before water absorption via exposed collagen substrates, regardless of deposition time. In conclusion, HiPIMS is an effective method to deposit UTGF on biomedical materials such as collagen without damaging valuable substrates. The composition of two materials could be further used for biomedical purposes with preserved functions of UTGF and collagen.
Collapse
Affiliation(s)
- Sheng-Yang Huang
- Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan; (S.-Y.H.); (P.-Y.H.)
- Department of Surgery, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung 40705, Taiwan
- Department of Medicine, National Yang-Ming University, 155, Sec.2, Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan; (S.-Y.H.); (P.-Y.H.)
| | - Chi-Jen Chung
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, 666, Buzih Rd., Beitun District, Taichung 40601, Taiwan;
| | - Chia-Man Chou
- Department of Surgery, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung 40705, Taiwan
- Department of Medicine, National Yang-Ming University, 155, Sec.2, Linong Street, Beitou District, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 5182)
| | - Ju-Liang He
- Institute of Plasma, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan;
| |
Collapse
|
2
|
Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Curr Opin Biotechnol 2014; 31:108-16. [PMID: 25462628 DOI: 10.1016/j.copbio.2014.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022]
Abstract
Identifying the matrix properties that permit directing stem cell fate is crucial for expanding desired cell lineages ex vivo for disease treatment. Such efforts require knowledge of matrix surface chemistry and the cell responses they elicit. Recent progress in analyzing biomaterial composition and identifying cell phenotype with two label-free chemical imaging techniques, TOF-SIMS and Raman spectroscopy are presented. TOF-SIMS is becoming indispensable for the surface characterization of biomaterial scaffolds. Developments in TOF-SIMS data analysis enable correlating surface chemistry with biological response. Advances in the interpretation of Raman spectra permit identifying the fate decisions of individual, living cells with location specificity. Here we highlight this progress and discuss further improvements that would facilitate efforts to develop artificial scaffolds for tissue regeneration.
Collapse
|