1
|
Vogg MC, Ferenc J, Buzgariu WC, Perruchoud C, Sanchez PGL, Beccari L, Nuninger C, Le Cras Y, Delucinge-Vivier C, Papasaikas P, Vincent S, Galliot B, Tsiairis CD. The transcription factor Zic4 promotes tentacle formation and prevents epithelial transdifferentiation in Hydra. SCIENCE ADVANCES 2022; 8:eabo0694. [PMID: 36563144 PMCID: PMC9788771 DOI: 10.1126/sciadv.abo0694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/β-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Wanda Christa Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Paul Gerald Layague Sanchez
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Leonardo Beccari
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon 1, Lyon, France
| | - Clara Nuninger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Youn Le Cras
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Céline Delucinge-Vivier
- iGE3 Genomics Platform, University of Geneva, 1 Rue Michel-Servet, Geneva 4 1211, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Stéphane Vincent
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon F-69364, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| |
Collapse
|
2
|
Miyokawa R, Kanaya HJ, Itoh TQ, Kobayakawa Y, Kusumi J. Immature symbiotic system between horizontally transmitted green algae and brown hydra. Sci Rep 2021; 11:2921. [PMID: 33536483 PMCID: PMC7859245 DOI: 10.1038/s41598-021-82489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Some strains of brown hydra (Hydra vulgaris) are able to harbor the green algae Chlorococcum in their endodermal epithelial cells as symbionts. However, the relationship between brown hydra and chlorococcum is considered to be incipient symbiosis because most artificially introduced symbionts are not stable and because symbiotic H. vulgaris strains are rare in the wild. In this study, we compared the gene expression levels of the newly established symbiotic hydra (strain 105G), the native symbiotic strain (J7), and their non-symbiotic polyps to determine what changes would occur at the early stage of the evolution of symbiosis. We found that both the 105G and J7 strains showed comparable expression patterns, exhibiting upregulation of lysosomal enzymes and downregulation of genes related to nematocyte development and function. Meanwhile, genes involved in translation and the respiratory chain were upregulated only in strain 105G. Furthermore, treatment with rapamycin, which inhibits translation activity, induced the degeneration of the symbiotic strains (105G and J7). This effect was severe in strain 105G. Our results suggested that evolving the ability to balance the cellular metabolism between the host and the symbiont is a key requirement for adapting to endosymbiosis with chlorococcum.
Collapse
Affiliation(s)
- Ryo Miyokawa
- grid.177174.30000 0001 2242 4849Graduate School of Integrated Science for Global Society, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroyuki J. Kanaya
- grid.177174.30000 0001 2242 4849School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Taichi Q. Itoh
- grid.177174.30000 0001 2242 4849Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yoshitaka Kobayakawa
- grid.177174.30000 0001 2242 4849Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Junko Kusumi
- grid.177174.30000 0001 2242 4849Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
3
|
Bentele T, Amadei F, Kimmle E, Veschgini M, Linke P, Sontag-González M, Tennigkeit J, Ho AD, Özbek S, Tanaka M. New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins. Sci Rep 2019; 9:19116. [PMID: 31836799 PMCID: PMC6910907 DOI: 10.1038/s41598-019-55655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
Nematocysts, the stinging organelles of cnidarians, have remarkable mechanical properties. Hydra nematocyst capsules undergo volume changes of 50% during their explosive exocytosis and withstand osmotic pressures of beyond 100 bar. Recently, two novel protein components building up the nematocyst capsule wall in Hydra were identified. The cnidarian proline-rich protein 1 (CPP-1) characterized by a "rigid" polyproline motif and the elastic Cnidoin possessing a silk-like domain were shown to be part of the capsule structure via short cysteine-rich domains that spontaneously crosslink the proteins via disulfide bonds. In this study, recombinant Cnidoin and CPP-1 are expressed in E. coli and the elastic modulus of spontaneously crosslinked bulk proteins is compared with that of isolated nematocysts. For the fabrication of uniform protein nanofibers by electrospinning, the preparative conditions are systematically optimized. Both fibers remain stable even after rigorous washing and immersion into bulk water owing to the simultaneous crosslinking of cysteine-rich domains. This makes our nanofibers clearly different from other protein nanofibers that are not stable without chemical crosslinkers. Following the quantitative assessment of mechanical properties, the potential of Cnidoin and CPP-1 nanofibers is examined towards the maintenance of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Theresa Bentele
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariana Sontag-González
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
- School of Earth and Environmental Sciences, Science Medicine and Health, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Jutta Tennigkeit
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan.
| |
Collapse
|
4
|
Abstract
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Park HG, Yeo MK. Toxic effects against bacteria of silver nanocolloids and silver nanotubes in the presence of hydra cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0004-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Tortiglione C, Antognazza MR, Tino A, Bossio C, Marchesano V, Bauduin A, Zangoli M, Morata SV, Lanzani G. Semiconducting polymers are light nanotransducers in eyeless animals. SCIENCE ADVANCES 2017; 3:e1601699. [PMID: 28138549 PMCID: PMC5266477 DOI: 10.1126/sciadv.1601699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/08/2016] [Indexed: 05/17/2023]
Abstract
Current implant technology uses electrical signals at the electrode-neural interface. This rather invasive approach presents important issues in terms of performance, tolerability, and overall safety of the implants. Inducing light sensitivity in living organisms is an alternative method that provides groundbreaking opportunities in neuroscience. Optogenetics is a spectacular demonstration of this, yet is limited by the viral transfection of exogenous genetic material. We propose a nongenetic approach toward light control of biological functions in living animals. We show that nanoparticles based on poly(3-hexylthiophene) can be internalized in eyeless freshwater polyps and are fully biocompatible. Under light, the nanoparticles modify the light response of the animals, at two different levels: (i) they enhance the contraction events of the animal body, and (ii) they change the transcriptional activation of the opsin3-like gene. This suggests the establishment of a seamless and biomimetic interface between the living organism and the polymer nanoparticles that behave as light nanotransducers, coping with or amplifying the function of primitive photoreceptors.
Collapse
Affiliation(s)
- Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Valentina Marchesano
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Antonella Bauduin
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Susana Vaquero Morata
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Raikova EV, Raikova OI. Nervous system immunohistochemistry of the parasitic cnidarian Polypodium hydriforme at its free-living stage. ZOOLOGY 2015; 119:143-152. [PMID: 26897553 DOI: 10.1016/j.zool.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Polypodium hydriforme, the only species in Polypodiozoa, which is currently considered a class of Cnidaria, and likely a sister group to Medusozoa (together with Myxozoa), is a cnidarian adapted to intracellular parasitism inside sturgeon oocytes. Free-living P. hydriforme lives on river bottoms; it walks on supporting tentacles and uses sensory tentacles to capture food and bring it to the mouth. The nervous system of free-living P. hydriforme was studied by confocal microscopy and immunohistochemistry using antibodies to FMRF-amide and α-tubulin combined with phalloidin-staining of F-actin fibres. A sensory FMRF-amide immunoreactive (IR) nerve net and an α-tubulin IR nerve net have been identified. The FMRF-amide IR nerve net underlies the epidermis along the tentacles and around the mouth; it consists of neurites emanating from epidermal sensory cells and basiepidermal ganglion cells, and it connects with cnidocytes. A deeper-lying α-tubulin IR nerve net occurs only in tentacles and looks like chains of different-sized beads crossing the mesoglea and entwining muscles. Anti-α-tubulin staining also reveals microtubules in muscle cells following the longitudinal muscle fibres or the thin circular F-actin fibres of the tentacles. Cnidocytes in the tentacles are embedded in a regular hexagonal non-neural network formed by the tubulin IR cytoskeleton of epidermal cells. Cnidocils of the cnidocytes around the mouth and in walking tentacles are identical, but those in sensory tentacles differ in length and width. The possible homology of the tubulin IR nerve net with motor nerve nets of cnidarians is discussed. The absence of a classic nerve ring around the mouth and the lack of specialised sense organs are considered to be plesiomorphic characters for Cnidaria.
Collapse
Affiliation(s)
- Ekaterina V Raikova
- Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga I Raikova
- Zoological Institute, Russian Academy of Sciences, 1, Universitetskaya nab., 199034 St. Petersburg, Russia; Biological Faculty, Saint Petersburg State University, 7-9, Universitetskaya nab., 199034 St. Petersburg, Russia.
| |
Collapse
|
8
|
Schwentner M, Bosch TC. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa). Mol Phylogenet Evol 2015; 91:41-55. [DOI: 10.1016/j.ympev.2015.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/21/2022]
|
9
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
10
|
Evolution of apicomplexan secretory organelles. Int J Parasitol 2012; 42:1071-81. [PMID: 23068912 DOI: 10.1016/j.ijpara.2012.09.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor.
Collapse
|