1
|
de Block T, De Baetselier I, Van den Bossche D, Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, Vanbaelen T, Claes N, Vandelannoote K, Kenyon C, Harrison O, Santhini Manoharan-Basil S. Genomic oropharyngeal Neisseria surveillance detects MALDI-TOF MS species misidentifications and reveals a novel Neisseria cinerea clade. J Med Microbiol 2024; 73. [PMID: 39212029 DOI: 10.1099/jmm.0.001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nathalie Claes
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Koen Vandelannoote
- Bacterial Phylogenomics group, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Odile Harrison
- Nuffield Department of Population Health, Infectious Diseases Epidemiology Unit, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Diop A, Torrance EL, Stott CM, Bobay LM. Gene flow and introgression are pervasive forces shaping the evolution of bacterial species. Genome Biol 2022; 23:239. [PMID: 36357919 PMCID: PMC9650840 DOI: 10.1186/s13059-022-02809-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although originally thought to evolve clonally, studies have revealed that most bacteria exchange DNA. However, it remains unclear to what extent gene flow shapes the evolution of bacterial genomes and maintains the cohesion of species. RESULTS Here, we analyze the patterns of gene flow within and between >2600 bacterial species. Our results show that fewer than 10% of bacterial species are truly clonal, indicating that purely asexual species are rare in nature. We further demonstrate that the taxonomic criterion of ~95% genome sequence identity routinely used to define bacterial species does not accurately represent a level of divergence that imposes an effective barrier to gene flow across bacterial species. Interruption of gene flow can occur at various sequence identities across lineages, generally from 90 to 98% genome identity. This likely explains why a ~95% genome sequence identity threshold has empirically been judged as a good approximation to define bacterial species. Our results support a universal mechanism where the availability of identical genomic DNA segments required to initiate homologous recombination is the primary determinant of gene flow and species boundaries in bacteria. We show that these barriers of gene flow remain porous since many distinct species maintain some level of gene flow, similar to introgression in sexual organisms. CONCLUSIONS Overall, bacterial evolution and speciation are likely shaped by similar forces driving the evolution of sexual organisms. Our findings support a model where the interruption of gene flow-although not necessarily the initial cause of speciation-leads to the establishment of permanent and irreversible species borders.
Collapse
Affiliation(s)
- Awa Diop
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Ellis L. Torrance
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Caroline M. Stott
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Louis-Marie Bobay
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| |
Collapse
|
3
|
Valiente-Mullor C, Beamud B, Ansari I, Francés-Cuesta C, García-González N, Mejía L, Ruiz-Hueso P, González-Candelas F. One is not enough: On the effects of reference genome for the mapping and subsequent analyses of short-reads. PLoS Comput Biol 2021; 17:e1008678. [PMID: 33503026 PMCID: PMC7870062 DOI: 10.1371/journal.pcbi.1008678] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/08/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Mapping of high-throughput sequencing (HTS) reads to a single arbitrary reference genome is a frequently used approach in microbial genomics. However, the choice of a reference may represent a source of errors that may affect subsequent analyses such as the detection of single nucleotide polymorphisms (SNPs) and phylogenetic inference. In this work, we evaluated the effect of reference choice on short-read sequence data from five clinically and epidemiologically relevant bacteria (Klebsiella pneumoniae, Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Serratia marcescens). Publicly available whole-genome assemblies encompassing the genomic diversity of these species were selected as reference sequences, and read alignment statistics, SNP calling, recombination rates, dN/dS ratios, and phylogenetic trees were evaluated depending on the mapping reference. The choice of different reference genomes proved to have an impact on almost all the parameters considered in the five species. In addition, these biases had potential epidemiological implications such as including/excluding isolates of particular clades and the estimation of genetic distances. These findings suggest that the single reference approach might introduce systematic errors during mapping that affect subsequent analyses, particularly for data sets with isolates from genetically diverse backgrounds. In any case, exploring the effects of different references on the final conclusions is highly recommended. Mapping consists in the alignment of reads (i.e., DNA fragments) obtained through high-throughput genome sequencing to a previously assembled reference sequence. It is a common practice in genomic studies to use a single reference for mapping, usually the ‘reference genome’ of a species—a high-quality assembly. However, the selection of an optimal reference is hindered by intrinsic intra-species genetic variability, particularly in bacteria. It is known that genetic differences between the reference genome and the read sequences may produce incorrect alignments during mapping. Eventually, these errors could lead to misidentification of variants and biased reconstruction of phylogenetic trees (which reflect ancestry between different bacterial lineages). To our knowledge, this is the first work to systematically examine the effect of different references for mapping on the inference of tree topology as well as the impact on recombination and natural selection inferences. Furthermore, the novelty of this work relies on a procedure that guarantees that we are evaluating only the effect of the reference. This effect has proved to be pervasive in the five bacterial species that we have studied and, in some cases, alterations in phylogenetic trees could lead to incorrect epidemiological inferences. Hence, the use of different reference genomes may be prescriptive to assess the potential biases of mapping.
Collapse
Affiliation(s)
- Carlos Valiente-Mullor
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Beatriz Beamud
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- * E-mail: (BB); (FG-C)
| | - Iván Ansari
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Carlos Francés-Cuesta
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Neris García-González
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Lorena Mejía
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paula Ruiz-Hueso
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBER in Epidemiology and Public Health, Valencia, Spain
- * E-mail: (BB); (FG-C)
| |
Collapse
|
4
|
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079-1086. [DOI: 10.1038/s41587-020-0501-8] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
|
5
|
Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N, Shaw LP, Stoesser N, Peto TEA, Crook DW, Walker AS. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. Gigascience 2020; 9:giaa007. [PMID: 32025702 PMCID: PMC7002876 DOI: 10.1093/gigascience/giaa007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/02/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accurately identifying single-nucleotide polymorphisms (SNPs) from bacterial sequencing data is an essential requirement for using genomics to track transmission and predict important phenotypes such as antimicrobial resistance. However, most previous performance evaluations of SNP calling have been restricted to eukaryotic (human) data. Additionally, bacterial SNP calling requires choosing an appropriate reference genome to align reads to, which, together with the bioinformatic pipeline, affects the accuracy and completeness of a set of SNP calls obtained. This study evaluates the performance of 209 SNP-calling pipelines using a combination of simulated data from 254 strains of 10 clinically common bacteria and real data from environmentally sourced and genomically diverse isolates within the genera Citrobacter, Enterobacter, Escherichia, and Klebsiella. RESULTS We evaluated the performance of 209 SNP-calling pipelines, aligning reads to genomes of the same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable SNP calling was reference genome selection. Across multiple taxa, there was a strong inverse relationship between pipeline sensitivity and precision, and the Mash distance (a proxy for average nucleotide divergence) between reads and reference genome. The effect was especially pronounced for diverse, recombinogenic bacteria such as Escherichia coli but less dominant for clonal species such as Mycobacterium tuberculosis. CONCLUSIONS The accuracy of SNP calling for a given species is compromised by increasing intra-species diversity. When reads were aligned to the same genome from which they were sequenced, among the highest-performing pipelines was Novoalign/GATK. By contrast, when reads were aligned to particularly divergent genomes, the highest-performing pipelines often used the aligners NextGenMap or SMALT, and/or the variant callers LoFreq, mpileup, or Strelka.
Collapse
Affiliation(s)
- Stephen J Bush
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Dona Foster
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - David W Eyre
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SH, UK
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
6
|
What Microbial Population Genomics Has Taught Us About Speciation. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Bobay LM, Ochman H. Biological species are universal across Life's domains. Genome Biol Evol 2017; 9:2982379. [PMID: 28186559 PMCID: PMC5381558 DOI: 10.1093/gbe/evx026] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Delineation of species is fundamental to organizing and understanding biological diversity. The most widely applied criterion for distinguishing species is the Biological Species Concept (BSC), which defines species as groups of interbreeding individuals that remain reproductively isolated from other such groups. The BSC has broad appeal; however, many organisms, most notably asexual lineages, cannot be classified according to the BSC. Despite their exclusively asexual mode of reproduction, Bacteria and Archaea can transfer and exchange genes though homologous recombination. Here we show that barriers to homologous gene exchange define biological species in prokaryotes with the same efficacy as in sexual eukaryotes. By analyzing the impact of recombination on the polymorphisms in thousands of genome sequences, we find that over half of named bacterial species undergo continuous recombination among sequenced constituents, indicative of true biological species. However, nearly a quarter of named bacterial species show sharp discontinuities and comprise multiple biological species. These interruptions of gene flow are not a simple function of genome identity, indicating that bacterial speciation does not uniformly proceed by the gradual divergence of genome sequences. The same genomic approach based on recombinant polymorphisms retrieves known species boundaries in sexually reproducing eukaryotes. Thus, a single biological species definition based on gene flow, once thought to be limited only to sexually reproducing organisms, is applicable to all cellular lifeforms.
Collapse
Affiliation(s)
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin
| |
Collapse
|
8
|
Comparative Genomic Analysis of Haemophilus haemolyticus and Nontypeable Haemophilus influenzae and a New Testing Scheme for Their Discrimination. J Clin Microbiol 2016; 54:3010-3017. [PMID: 27707939 DOI: 10.1128/jcm.01511-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
Haemophilus haemolyticus has been recently discovered to have the potential to cause invasive disease. It is closely related to nontypeable Haemophilus influenzae (NT H. influenzae). NT H. influenzae and H. haemolyticus are often misidentified because none of the existing tests targeting the known phenotypes of H. haemolyticus are able to specifically identify H. haemolyticus Through comparative genomic analysis of H. haemolyticus and NT H. influenzae, we identified genes unique to H. haemolyticus that can be used as targets for the identification of H. haemolyticus A real-time PCR targeting purT (encoding phosphoribosylglycinamide formyltransferase 2 in the purine synthesis pathway) was developed and evaluated. The lower limit of detection was 40 genomes/PCR; the sensitivity and specificity in detecting H. haemolyticus were 98.9% and 97%, respectively. To improve the discrimination of H. haemolyticus and NT H. influenzae, a testing scheme combining two targets (H. haemolyticus purT and H. influenzae hpd, encoding protein D lipoprotein) was also evaluated and showed 96.7% sensitivity and 98.2% specificity for the identification of H. haemolyticus and 92.8% sensitivity and 100% specificity for the identification of H. influenzae, respectively. The dual-target testing scheme can be used for the diagnosis and surveillance of infection and disease caused by H. haemolyticus and NT H. influenzae.
Collapse
|
9
|
Joseph SJ, Cox D, Wolff B, Morrison SS, Kozak-Muiznieks NA, Frace M, Didelot X, Castillo-Ramirez S, Winchell J, Read TD, Dean D. Dynamics of genome change among Legionella species. Sci Rep 2016; 6:33442. [PMID: 27633769 PMCID: PMC5025774 DOI: 10.1038/srep33442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires' Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1-17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD-causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Cox
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bernard Wolff
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shatavia S. Morrison
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Michael Frace
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jonas Winchell
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Medicine and University of California, San Francisco, San Francisco, California, USA
- Department of Biomedical Engineering, University of California at San Francisco and Berkeley, San Francisco and Berkeley, California, USA
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
10
|
Yahara K, Didelot X, Jolley KA, Kobayashi I, Maiden MCJ, Sheppard SK, Falush D. The Landscape of Realized Homologous Recombination in Pathogenic Bacteria. Mol Biol Evol 2016; 33:456-71. [PMID: 26516092 PMCID: PMC4866539 DOI: 10.1093/molbev/msv237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombination enhances the adaptive potential of organisms by allowing genetic variants to be tested on multiple genomic backgrounds. Its distribution in the genome can provide insight into the evolutionary forces that underlie traits, such as the emergence of pathogenicity. Here, we examined landscapes of realized homologous recombination of 500 genomes from ten bacterial species and found all species have "hot" regions with elevated rates relative to the genome average. We examined the size, gene content, and chromosomal features associated with these regions and the correlations between closely related species. The recombination landscape is variable and evolves rapidly. For example in Salmonella, only short regions of around 1 kb in length are hot whereas in the closely related species Escherichia coli, some hot regions exceed 100 kb, spanning many genes. Only Streptococcus pyogenes shows evidence for the positive correlation between GC content and recombination that has been reported for several eukaryotes. Genes with function related to the cell surface/membrane are often found in recombination hot regions but E. coli is the only species where genes annotated as "virulence associated" are consistently hotter. There is also evidence that some genes with "housekeeping" functions tend to be overrepresented in cold regions. For example, ribosomal proteins showed low recombination in all of the species. Among specific genes, transferrin-binding proteins are recombination hot in all three of the species in which they were found, and are subject to interspecies recombination.
Collapse
Affiliation(s)
- Koji Yahara
- Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | | - Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Daniel Falush
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|
12
|
Urbanczyk H, Ogura Y, Hayashi T. Contrasting inter- and intraspecies recombination patterns in the "Harveyi clade" vibrio collected over large spatial and temporal scales. Genome Biol Evol 2014; 7:71-80. [PMID: 25527835 PMCID: PMC4316622 DOI: 10.1093/gbe/evu269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombination plays an important role in the divergence of bacteria, but the frequency of interspecies and intraspecies recombination events remains poorly understood. We investigated recombination events that occurred within core genomes of 35 Vibrio strains (family Vibrionaceae, Gammaproteobacteria), from six closely related species in the so-called “Harveyi clade.” The strains were selected from a collection of strains isolated in the last 90 years, from various environments worldwide. We found a close relationship between the number of interspecies recombination events within core genomes of the 35 strains and the overall genomic identity, as inferred from calculations of the average nucleotide identity. The relationship between the overall nucleotide identity and the number of detected interspecies recombination events was comparable when analyzing strains isolated over 80 years apart, from different hemispheres, or from different ecologies, as well as in strains isolated from the same geographic location within a short time frame. We further applied the same method of detecting recombination events to analyze 11 strains of Vibrio campbellii, and identified disproportionally high number of intraspecies recombination events within the core genomes of some, but not all, strains. The high number of recombination events was detected between V. campbellii strains that have significant temporal (over 18 years) and geographical (over 10,000 km) differences in their origins of isolation. Results of this study reveal a remarkable stability of Harveyi clade species, and give clues about the origins and persistence of species in the clade.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
13
|
Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol 2014; 6:1514-29. [PMID: 24923323 PMCID: PMC4079204 DOI: 10.1093/gbe/evu123] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 01/03/2023] Open
Abstract
Horizontal gene transfer (HGT) and gene loss are key processes in bacterial evolution. However, the role of gene gain and loss in the emergence and maintenance of ecologically differentiated bacterial populations remains an open question. Here, we use whole-genome sequence data to quantify gene gain and loss for 27 lineages of the plant-associated bacterium Pseudomonas syringae. We apply an extensive error-control procedure that accounts for errors in draft genome data and greatly improves the accuracy of patterns of gene occurrence among these genomes. We demonstrate a history of extensive genome fluctuation for this species and show that individual lineages could have acquired thousands of genes in the same period in which a 1% amino acid divergence accrues in the core genome. Elucidating the dynamics of genome fluctuation reveals the rapid turnover of gained genes, such that the majority of recently gained genes are quickly lost. Despite high observed rates of fluctuation, a phylogeny inferred from patterns of gene occurrence is similar to a phylogeny based on amino acid replacements within the core genome. Furthermore, the core genome phylogeny suggests that P. syringae should be considered a number of distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. Gained genes are transferred from a variety of sources, reflecting the depth and diversity of the potential gene pool available via HGT. Overall, our results provide further insights into the evolutionary dynamics of genome fluctuation and implicate HGT as a major factor contributing to the diversification of P. syringae lineages.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, United KingdomForest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Sarah Green
- Forest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Bridget E Laue
- Forest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, United KingdomCentre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| |
Collapse
|
14
|
|
15
|
|
16
|
Austin P, Jarvis K. Tenth anniversary updates from our authors. BMC Biol 2013; 11:39. [PMID: 23587215 PMCID: PMC3626886 DOI: 10.1186/1741-7007-11-39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/11/2013] [Indexed: 11/10/2022] Open
|
17
|
Delgado G, Souza V, Morales R, Cerritos R, González-González A, Méndez JL, Vázquez V, Cravioto A. Genetic characterization of atypical Citrobacter freundii. PLoS One 2013; 8:e74120. [PMID: 24069274 PMCID: PMC3771896 DOI: 10.1371/journal.pone.0074120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
The ability of a bacterial population to survive in different niches, as well as in stressful and rapidly changing environmental conditions, depends greatly on its genetic content. To survive such fluctuating conditions, bacteria have evolved different mechanisms to modulate phenotypic variations and related strategies to produce high levels of genetic diversity. Laboratories working in microbiological diagnosis have shown that Citrobacter freundii is very versatile in its colony morphology, as well as in its biochemical, antigenic and pathogenic behaviours. This phenotypic versatility has made C. freundii difficult to identify and it is frequently confused with both Salmonella enterica and Escherichia coli. In order to determine the genomic events and to explain the mechanisms involved in this plasticity, six C. freundii isolates were selected from a phenotypic variation study. An I-CeuI genomic cleavage map was created and eight housekeeping genes, including 16S rRNA, were sequenced. In general, the results showed a range of both phenotypes and genotypes among the isolates with some revealing a greater similarity to C. freundii and some to S. enterica, while others were identified as phenotypic and genotypic intermediary states between the two species. The occurrence of these events in natural populations may have important implications for genomic diversification in bacterial evolution, especially when considering bacterial species boundaries. In addition, such events may have a profound impact on medical science in terms of treatment, course and outcomes of infectious diseases, evading the immune response, and understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriela Delgado
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Rosario Morales
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - René Cerritos
- Departamento de Cirugía Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Andrea González-González
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - José Luis Méndez
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | | | | |
Collapse
|