1
|
Khelifa AS, Bhaskaran M, Boissavy T, Mouveaux T, Silva TA, Chhuon C, Attias M, Guerrera IC, De Souza W, Dauvillee D, Roger E, Gissot M. PP1 phosphatase controls both daughter cell formation and amylopectin levels in Toxoplasma gondii. PLoS Biol 2024; 22:e3002791. [PMID: 39255306 DOI: 10.1371/journal.pbio.3002791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite Toxoplasma gondii. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells' inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.
Collapse
Affiliation(s)
- Asma Sarah Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Maanasa Bhaskaran
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tom Boissavy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Thomas Mouveaux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tatiana Araujo Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Marcia Attias
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Wanderley De Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Dauvillee
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576, Lille, France
| | - Emmanuel Roger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Mansour H, Cabezas-Cruz A, Peucelle V, Farce A, Salomé-Desnoulez S, Metatla I, Guerrera IC, Hollin T, Khalife J. Characterization of GEXP15 as a Potential Regulator of Protein Phosphatase 1 in Plasmodium falciparum. Int J Mol Sci 2023; 24:12647. [PMID: 37628837 PMCID: PMC10454571 DOI: 10.3390/ijms241612647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.
Collapse
Affiliation(s)
- Hala Mansour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France;
| | - Véronique Peucelle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U1286–Infinite–Institute for Translational Research in Inflammation, 59000 Lille, France;
| | - Sophie Salomé-Desnoulez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41–UAR 2014–PLBS, 59000 Lille, France;
| | - Ines Metatla
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Thomas Hollin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| |
Collapse
|
3
|
Fréville A, Gnangnon B, Tremp AZ, De Witte C, Cailliau K, Martoriati A, Aliouat EM, Fernandes P, Chhuon C, Silvie O, Marion S, Guerrera IC, Dessens JT, Pierrot C, Khalife J. Plasmodium berghei leucine-rich repeat protein 1 downregulates protein phosphatase 1 activity and is required for efficient oocyst development. Open Biol 2022; 12:220015. [PMID: 35920043 PMCID: PMC9346556 DOI: 10.1098/rsob.220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Caroline De Witte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
4
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
5
|
Mapping PP1c and Its Inhibitor 2 Interactomes Reveals Conserved and Specific Networks in Asexual and Sexual Stages of Plasmodium. Int J Mol Sci 2022; 23:ijms23031069. [PMID: 35162991 PMCID: PMC8835298 DOI: 10.3390/ijms23031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.
Collapse
|
6
|
Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Commun Biol 2021; 4:760. [PMID: 34145386 PMCID: PMC8213788 DOI: 10.1038/s42003-021-02273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.
Collapse
|
7
|
Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans 2020; 48:2229-2240. [DOI: 10.1042/bst20200503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
Abstract
Inhibitor-2 (I2) ranks amongst the most ancient regulators of protein phosphatase-1 (PP1). It is a small, intrinsically disordered protein that was originally discovered as a potent inhibitor of PP1. However, later investigations also characterized I2 as an activator of PP1 as well as a chaperone for PP1 folding. Numerous studies disclosed the importance of I2 for diverse cellular processes but did not describe a unifying molecular principle of PP1 regulation. We have re-analyzed the literature on I2 in the light of current insights of PP1 structure and regulation. Extensive biochemical data, largely ignored in the recent I2 literature, provide substantial indirect evidence for a role of I2 as a loader of active-site metals. In addition, I2 appears to function as a competitive inhibitor of PP1 in higher eukaryotes. The published data also demonstrate that several segments of I2 that remain unstructured in the PP1 : I2 complex are in fact essential for PP1 regulation. Together, the available data identify I2 as a dynamic activity-modulator of PP1.
Collapse
|
8
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
9
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
10
|
Cannon JF. Novel phosphorylation-dependent regulation in an unstructured protein. Proteins 2019; 88:366-384. [PMID: 31512287 DOI: 10.1002/prot.25812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
This work explores how phosphorylation of an unstructured protein region in inhibitor-2 (I2) regulates protein phosphatase-1 (PP1) enzyme activity using molecular dynamics (MD). Free I2 is largely unstructured; however, when bound to PP1, three segments adopt a stable structure. In particular, an I2 helix (i-helix) blocks the PP1 active site and inhibits phosphatase activity. I2 phosphorylation in the PP1-I2 complex activates phosphatase activity without I2 dissociation. The I2 Thr74 regulatory phosphorylation site is in an unstructured domain in PP1-I2. PP1-I2 MD demonstrated that I2 phosphorylation promotes early steps of PP1-I2 activation in explicit solvent models. Moreover, phosphorylation-dependent activation occurred in PP1-I2 complexes derived from I2 orthologs with diverse sequences from human, yeast, worm, and protozoa. This system allowed exploration of features of the 73-residue unstructured human I2 domain critical for phosphorylation-dependent activation. These studies revealed that components of I2 unstructured domain are strategically positioned for phosphorylation responsiveness including a transient α-helix. There was no evidence that electrostatic interactions of I2 phosphothreonine74 influenced PP1-I2 activation. Instead, phosphorylation altered the conformation of residues around Thr74. Phosphorylation uncurled the distance between I2 residues Glu71 to Tyr76 to promote PP1-I2 activation, whereas reduced distances reduced activation. This I2 residue Glu71 to Tyr76 distance distribution, independently from Thr74 phosphorylation, controls I2 i-helix displacement from the PP1 active site leading to PP1-I2 activation.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission. PLoS Pathog 2019; 15:e1007973. [PMID: 31348803 PMCID: PMC6685639 DOI: 10.1371/journal.ppat.1007973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle. In the absence of an effective vaccine and the emerging resistance to artemisinin combination therapy, malaria is still a significant threat to human health. Increasing our understanding of the specific mechanisms of the biology of Plasmodium is essential to propose new strategies to control this infection. Here, we demonstrated that GEXP15, a specific protein in Plasmodium, was able to interact with the Protein Phosphatase 1 and regulate its activity. We showed that both proteins are implicated in common protein complexes involved in the mRNA splicing and proteasome pathways. We reported that the deletion of GEXP15 leads to a loss of parasite virulence during asexual stages and a total abolishment of the capacity of deficient parasites to develop in the mosquito. We also found that this deletion affects both protein phosphorylation status and significantly decreases the expression of essential proteins in schizont and gametocyte stages. This study characterizes for the first time a novel molecular pathway through the control of PP1 by an essential and specific Plasmodium regulator, which may contribute to the discovery of new therapeutic targets to control malaria.
Collapse
|
12
|
Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes. Sci Rep 2019; 9:8120. [PMID: 31148576 PMCID: PMC6544628 DOI: 10.1038/s41598-019-44542-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.
Collapse
|
13
|
Tonk M, Pierrot C, Cabezas-Cruz A, Rahnamaeian M, Khalife J, Vilcinskas A. The Drosophila melanogaster antimicrobial peptides Mtk-1 and Mtk-2 are active against the malarial parasite Plasmodium falciparum. Parasitol Res 2019; 118:1993-1998. [PMID: 31001677 DOI: 10.1007/s00436-019-06305-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the vertebrate and invertebrate innate immune systems. Although AMPs are widely recognized for their broad-spectrum activity against bacteria, fungi, and viruses, their activity against protozoan parasites has not been investigated in detail. In this study, we tested 10 AMPs from three different insect species: the greater wax moth Galleria mellonella (cecropin A-D), the fruit fly Drosophila melanogaster (drosocin, Mtk-1 and Mtk-2), and the blow fly Lucilia sericata (LSerPRP-2, LSerPRP-3 and stomoxyn). We tested each AMP against the protozoan parasite Plasmodium falciparum which is responsible for the most severe form of malaria in humans. We also evaluated the impact of these insect AMPs on mouse and pig erythrocytes. Whereas all AMPs showed low hemolytic effects towards mouse and pig erythrocytes, only D. melanogaster Mtk-1 and Mtk-2 significantly inhibited the growth of P. falciparum at low concentrations. Mtk-1 and Mtk-2 could therefore be considered as leads for the development of antiparasitic drugs targeting the clinically important asexual blood stage of P. falciparum.
Collapse
Affiliation(s)
- Miray Tonk
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany. .,LOEWE Centre for Insect Biotechnology and Bioresources, Winchester Str. 2, 35392, Giessen, Germany.
| | - Christine Pierrot
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394, Giessen, Germany
| | - Jamal Khalife
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,LOEWE Centre for Insect Biotechnology and Bioresources, Winchester Str. 2, 35392, Giessen, Germany.,Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394, Giessen, Germany
| |
Collapse
|
14
|
Lenne A, De Witte C, Tellier G, Hollin T, Aliouat EM, Martoriati A, Cailliau K, Saliou JM, Khalife J, Pierrot C. Characterization of a Protein Phosphatase Type-1 and a Kinase Anchoring Protein in Plasmodium falciparum. Front Microbiol 2018; 9:2617. [PMID: 30429842 PMCID: PMC6220109 DOI: 10.3389/fmicb.2018.02617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Astrid Lenne
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Caroline De Witte
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Géraldine Tellier
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Thomas Hollin
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - El Moukhtar Aliouat
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Alain Martoriati
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Katia Cailliau
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Jean-Michel Saliou
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jamal Khalife
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Christine Pierrot
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
15
|
Pierrot C, Zhang X, Zanghi G, Fréville A, Rebollo A, Khalife J. Peptides derived from Plasmodium falciparum leucine-rich repeat 1 bind to serine/threonine phosphatase type 1 and inhibit parasite growth in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:85-88. [PMID: 29386885 PMCID: PMC5765974 DOI: 10.2147/dddt.s153095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Christine Pierrot
- Center for Infection and Immunity of Lille, U1019 - UMR 8204, Institut Pasteur de Lille, Université de Lille, Lille Cedex
| | | | | | - Aline Fréville
- Center for Infection and Immunity of Lille, U1019 - UMR 8204, Institut Pasteur de Lille, Université de Lille, Lille Cedex
| | | | - Jamal Khalife
- Center for Infection and Immunity of Lille, U1019 - UMR 8204, Institut Pasteur de Lille, Université de Lille, Lille Cedex
| |
Collapse
|
16
|
The Toxoplasma gondii inhibitor-2 regulates protein phosphatase 1 activity through multiple motifs. Parasitol Res 2017; 116:2417-2426. [PMID: 28667522 DOI: 10.1007/s00436-017-5543-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii has a complex life cycle characterized by multiple differentiation steps that are essential for its survival in both human and definitive feline host. Several studies have demonstrated the importance of phosphorylations by protein kinases during the life cycle of T. gondii. However, very little is known about protein phosphatases and their regulators in the parasite. We report the molecular and functional characterization of the T. gondii ortholog of the inhibitor-2 protein, designated TgI2. We show that TgI2 encompasses conserved motifs involved in the interaction and modulation of the phosphatase activity of T. gondii protein phosphatase 1, named TgPP1. We show that a specific combination of motifs is involved in binding and/or inhibition of the TgPP1 activity. We show here that the TgI2 protein is a potent inhibitor of TgPP1 phosphatase activity. TgI2 SILK and RVxF motifs are critical for regulating the activity of TgPP1, a feature that is common with the higher eukaryotes inhibitor-2 protein.
Collapse
|
17
|
Yang C, Arrizabalaga G. The serine/threonine phosphatases of apicomplexan parasites. Mol Microbiol 2017; 106:1-21. [PMID: 28556455 DOI: 10.1111/mmi.13715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
The balance between phosphorylation and de-phosphorylation, which is delicately regulated by protein kinases and phosphatases, is critical for nearly all biological processes. The Apicomplexa are a large phylum which contains various parasitic protists, including human pathogens, such as Plasmodium, Toxoplasma, Cryptosporidium and Babesia species. The diverse life cycles of these parasites are highly complex and, not surprisingly, many of their key steps are exquisitely regulated by phosphorylation. Interestingly, many of the kinases and phosphatases, as well as the substrates involved in these events are unique to the parasites and therefore phosphorylation constitutes a viable target for antiparasitic intervention. Most progress on this realm has come from studies in Toxoplasma and Plasmodium of their respective kinomes and phosphoproteomes. Nonetheless, given their likely importance, phosphatases have recently become the focus of research within the apicomplexan parasites. In this review, we concentrate on serine/threonine phosphatases in apicomplexan parasites, with the focus on comprehensively identifying and naming protein phosphatases in available apicomplexan genomes, and summarizing the progress of their functional analyses in recent years.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. Eur J Med Chem 2017; 127:22-40. [DOI: 10.1016/j.ejmech.2016.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
|
19
|
Tellier G, Lenne A, Cailliau-Maggio K, Cabezas-Cruz A, Valdés JJ, Martoriati A, Aliouat EM, Gosset P, Delaire B, Fréville A, Pierrot C, Khalife J. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1. Front Microbiol 2016; 7:777. [PMID: 27303372 PMCID: PMC4881399 DOI: 10.3389/fmicb.2016.00777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2β of Plasmodium falciparum (PfeIF2β) is an interactor of PfPP1c. Sequence analysis of PfeIF2β revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 (29FGEKKK34, 103KVAW106). As expected, we showed that PfeIF2β binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2β-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2β revealed that both binding motifs are critical. We next showed that PfeIF2β is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2β seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2β in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2β in the nucleus. Hence, the role played by PfeIF2β in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1.
Collapse
Affiliation(s)
- Géraldine Tellier
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Astrid Lenne
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Katia Cailliau-Maggio
- Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille Lille, France
| | - Alejandro Cabezas-Cruz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - James J Valdés
- Institute of Parasitology, The Czech Academy of SciencesČeské Budějovice, Czech Republic; Department of Virology, Veterinary Research InstituteBrno, Czech Republic
| | - Alain Martoriati
- Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille Lille, France
| | - El M Aliouat
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Pierre Gosset
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille Lille, France
| | - Aline Fréville
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Christine Pierrot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Jamal Khalife
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| |
Collapse
|
20
|
Khalife J, Pierrot C. Phosphatases are emerging as novel druggable targets in Plasmodium. Future Microbiol 2016; 11:603-6. [PMID: 27159136 DOI: 10.2217/fmb-2016-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019
| | - Christine Pierrot
- UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Analysis of the interactome of the Ser/Thr Protein Phosphatase type 1 in Plasmodium falciparum. BMC Genomics 2016; 17:246. [PMID: 26988354 PMCID: PMC4794898 DOI: 10.1186/s12864-016-2571-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. RESULTS Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. CONCLUSIONS To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.
Collapse
|
22
|
Cabezas-Cruz A, Tonk M, Bouchut A, Pierrot C, Pierce RJ, Kotsyfakis M, Rahnamaeian M, Vilcinskas A, Khalife J, Valdés JJ. Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins. Front Microbiol 2016; 7:1682. [PMID: 27822206 PMCID: PMC5075766 DOI: 10.3389/fmicb.2016.01682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023] Open
Abstract
Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institute of Parasitology, Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d’Infection et d’Immunité de LilleLille, France
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences (ACVR)České Budějovice, Czech Republic
- Faculty of Science, University of South BohemiaČeské Budějovice, Czech Republic
| | - Miray Tonk
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied EcologyGiessen, Germany
| | - Anne Bouchut
- Institute of Parasitology, Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d’Infection et d’Immunité de LilleLille, France
| | - Christine Pierrot
- Institute of Parasitology, Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d’Infection et d’Immunité de LilleLille, France
| | - Raymond J. Pierce
- Institute of Parasitology, Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d’Infection et d’Immunité de LilleLille, France
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences (ACVR)České Budějovice, Czech Republic
| | - Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied EcologyGiessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of GiessenGiessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied EcologyGiessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of GiessenGiessen, Germany
| | - Jamal Khalife
- Institute of Parasitology, Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d’Infection et d’Immunité de LilleLille, France
- *Correspondence: James J. Valdés, Jamal Khalife,
| | - James J. Valdés
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences (ACVR)České Budějovice, Czech Republic
- Department of Virology, Veterinary Research InstituteBrno, Czech Republic
- *Correspondence: James J. Valdés, Jamal Khalife,
| |
Collapse
|
23
|
Pandey R, Mohmmed A, Pierrot C, Khalife J, Malhotra P, Gupta D. Genome wide in silico analysis of Plasmodium falciparum phosphatome. BMC Genomics 2014; 15:1024. [PMID: 25425018 PMCID: PMC4256932 DOI: 10.1186/1471-2164-15-1024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/12/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases. RESULTS Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes. CONCLUSION In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.
Collapse
Affiliation(s)
| | | | | | - Jamal Khalife
- Structural and Computational Biology group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
24
|
Fréville A, Tellier G, Vandomme A, Pierrot C, Vicogne J, Cantrelle FX, Martoriati A, Cailliau-Maggio K, Khalife J, Landrieu I. Identification of a Plasmodium falciparum inhibitor-2 motif involved in the binding and regulation activity of protein phosphatase type 1. FEBS J 2014; 281:4519-34. [PMID: 25132288 DOI: 10.1111/febs.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
The regulation of Plasmodium falciparum protein phosphatase type 1 (PfPP1) activity remains to be deciphered. Data from homologous eukaryotic type 1 protein phosphatases (PP1) suggest that several protein regulators should be involved in this essential process. One such regulator, named PfI2 based on its primary sequence homology with eukaryotic inhibitor 2 (I2), was recently shown to be able to interact with PfPP1 and to inhibit its phosphatase activity, mainly through the canonical 'RVxF' binding motif. The details of the structural and functional characteristics of this interaction are investigated here. Using NMR spectroscopy, a second site of interaction is suggested to reside between residues D94 and T117 and contains the 'FxxR/KxR/K' binding motif present in other I2 proteins. This site seems to play in concert/synergy with the 'RVxF' motif to bind PP1, because only mutations in both motifs were able to abolish this interaction completely. However, regarding the structure/function relationship, mutation of either the 'RVxF' or 'FxxR/KxR/K' motif is more drastic, because each mutation prevents the capacity of PfI2 to trigger germinal vesicle breakdown in microinjected Xenopus oocytes. This indicates that the tight association of the PfI2 regulator to PP1, mediated by a two-site interaction, is necessary to exert its function. Based on these results, the use of a peptide derived from the 'FxxR/KxR/K' PfI2 motif was investigated for its potential effect on Plasmodium growth. This peptide, fused at its N-terminus to a penetrating sequence, was shown to accumulate specifically in infected erythrocytes and to have an antiplasmodial effect.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014; 15:2431-53. [PMID: 24521882 PMCID: PMC3958860 DOI: 10.3390/ijms15022431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.
Collapse
|