1
|
Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol 2025; 91:e0133624. [PMID: 40008876 PMCID: PMC11921387 DOI: 10.1128/aem.01336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In a world facing the unprecedented threat of antibiotic-resistant bacteria, targeted approaches to control colonization and prevent disease caused by common pathobionts offer a promising solution. Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide, affecting both children and adults despite available antimicrobials and vaccines. Colonization, which occurs in the form of a biofilm in the upper respiratory tract, is frequent and a prerequisite for disease and transmission. The use of live bacterial strains as biotherapeutics for infectious diseases is actively being explored. Here, we investigated the potential of commensal streptococci to control S. pneumoniae. Screening of over 300 human isolates led to the identification of seven strains (one Streptococcus oralis and six Streptococcus mitis, designated A22 to G22) with inhibitory activity against S. pneumoniae of multiple serotypes and genotypes. Characterization of A22 to G22 cell-free supernatants indicated the involvement of secreted proteins or peptides in the inhibitory effect of all S. mitis isolates. Genome analyses revealed the presence of 64 bacteriocin loci, encoding 70 putative bacteriocins, several of which are novel and absent or rare in over 7,000 publicly available pneumococcal genomes. Deletion mutants indicated that bacteriocins partially or completely explained the anti-pneumococcal activity of the commensal strains. Importantly, strains A22 to G22 were further able to prevent and disrupt pneumococcal biofilms, a proxy for nasopharyngeal colonization. These results highlight the intricacy of the interactions among nasopharyngeal colonizers and support the potential of strains A22 to G22 to be used as live biotherapeutics, alone or in combination, to control S. pneumoniae colonization. IMPORTANCE Streptococcus pneumoniae (pneumococcus) infections remain a major public health issue despite the use of vaccines and antibiotics. Pneumococci asymptomatically colonize the human upper respiratory tract, a niche shared with several commensal Streptococcus species. Competition for space and nutrients among species sharing the same niche is well documented and tends to be more intense among closely related species. Based on this rationale, a screening of several commensal streptococci isolated from the human upper respiratory tract led to the identification of strains of Streptococcus mitis and Streptococcus oralis capable of inhibiting most pneumococcal strains, across diverse serotypes and genotypes. This inhibition was partially or wholly linked to the expression of novel bacteriocins. The selected S. mitis and S. oralis strains significantly disrupted pneumococcal biofilms, indicating a potential for using commensals as biotherapeutics to control pneumococcal colonization, a key step in preventing disease and transmission.
Collapse
Affiliation(s)
- João Borralho
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Handem
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Lança
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Ferreira
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Chochua S, Beall B, Lin W, Tran T, Rivers J, Li Z, Arvay ML, Kobayashi M, Houston J, Arias S, McGee L. The Emergent Invasive Serotype 4 ST10172 Strain Acquires vanG-Type Vancomycin-Resistance Element: A Case of a 66-Year-Old With Bacteremic Pneumococcal Pneumonia. J Infect Dis 2025; 231:746-750. [PMID: 39116351 DOI: 10.1093/infdis/jiae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
We report a single case of invasive pneumococcal disease (IPD) by serotype 4, multilocus sequence type 10172 (ST10172) isolate with vanG-type resistance genes and reduced vancomycin susceptibility. The isolate was recovered during 2022 from a 66-year-old resident with bacteremic pneumococcal pneumonia within a Centers for Disease Control and Prevention Active Bacterial Core surveillance (ABCs) site hospital. The patient had received 23-valent pneumococcal polysaccharide vaccine and there was no evidence of concurrent or prior receipt of vancomycin in the previous year. Serotype 4/ST10172 IPD has shown increases within western ABCs sites, and the recent acquisition of a vanG element warrants close monitoring of this lineage.
Collapse
Affiliation(s)
- Sopio Chochua
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Bernard Beall
- Eagle Global Scientific, LLC, Contractor to Respiratory Diseases Branch
| | - Wuling Lin
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Theresa Tran
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Joy Rivers
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Zhongya Li
- ASRT Inc, Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa L Arvay
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Miwako Kobayashi
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Jessica Houston
- Infectious Disease Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe
| | - Sabra Arias
- Infectious Disease Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe
| | - Lesley McGee
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| |
Collapse
|
3
|
Stefańska I, Kwiecień E, Didkowska A, Kizerwetter-Świda M, Chrobak-Chmiel D, Sałamaszyńska-Guz A, Żmuda P, Anusz K, Rzewuska M. Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep. Sci Rep 2025; 15:3165. [PMID: 39863800 PMCID: PMC11763030 DOI: 10.1038/s41598-025-87781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S. dysgalactiae isolates and their zoonotic potential remain unclear. Most molecular epidemiological studies explicate beta-hemolytic streptococci according to their MLST and M protein gene (emm) types. Although human S. dysgalactiae isolates are relatively well characterized, the data concerning animal isolates are scarce. Here, we report the molecular characteristics and antimicrobial resistance of S. dysgalactiae strains recovered from sheep and their genetic relationship with isolates from other animal hosts and humans. Overall, 11 PFGE pulsotypes, five MLST sequence types (STs), and two emm types were distinguished, with ST248 and stL1376 being the most prevalent, indicating genetic diversity among tested 17 ovine isolates. Some isolates exhibited resistance to doxycycline (59%), erythromycin (6%), ciprofloxacin (6%), and trimethoprim/sulfamethoxazole (6%), harboring various resistance determinants. Phylogenetic analysis showed that studied ovine isolates grouped together with human S. dysgalactiae isolates from the cases of zoonotic infections. Moreover, some ovine isolates shared identical STs and emm gene sequences with human non-invasive and invasive S. dysgalactiae strains. These findings suggest a possible link between human and ovine isolates and indicate the zoonotic potential of this pathogen.
Collapse
Affiliation(s)
- Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159 St, 02-776, Warsaw, Poland
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland
| | - Agnieszka Sałamaszyńska-Guz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland
| | - Piotr Żmuda
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159 St, 02-776, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland
| |
Collapse
|
4
|
Basheer M, Sasic K, Carlsson A, Vestberg N, Henriques-Normark B, Blomqvist K, Garriss G. A novel LAMP-based assay for the identification of Streptococcus pneumoniae and Streptococcus pseudopneumoniae in clinical isolates. J Clin Microbiol 2024; 62:e0091224. [PMID: 39526793 PMCID: PMC11633111 DOI: 10.1128/jcm.00912-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The Gram-positive bacteria Streptococcus pneumoniae is part of the Streptococcus mitis group (SMG) and causes life-threatening infections, such as pneumonia, sepsis, and meningitis. The closely related Streptococcus pseudopneumoniae has recently been shown to cause respiratory tract infections, as well as invasive infections, especially in patients with comorbidities. Due to the genetic and phenotypic similarities of species belonging to the SMG, the identification of S. pneumoniae and S. pseudopneumoniae is difficult and unreliable using phenotypic tests, as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and 16S rRNA sequencing. In this study, a loop-mediated isothermal amplification (LAMP)-based assay was developed using molecular markers specific for S. pneumoniae (SPN0001) and S. pseudopneumoniae (SPPN_RS10375). The LAMP assay was evaluated using a collection of SMG clinical isolates, concluding that the method provides a correct, reliable, and fast identification of both S. pneumoniae and S. pseudopneumoniae clinical isolates.
Collapse
Affiliation(s)
- Mariam Basheer
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Sasic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alice Carlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nora Vestberg
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Blomqvist
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Geneviève Garriss
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Bhardwaj SB, Sharma U, Mehta M, Sharma J. Streptococci Biotypes in Primary and Permanent Caries: A Case-Control Study. Int J Clin Pediatr Dent 2024; 17:1014-1017. [PMID: 39664827 PMCID: PMC11628693 DOI: 10.5005/jp-journals-10005-2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Background and aim Streptococci, mainly mutans streptococci, are known as the causative microbes of dental caries, but there is limited clarity about their impact on the tooth level and the distribution of streptococci species in different dentition stages. This study evaluates the distribution of streptococci species in primary and permanent teeth in children and adolescents with caries. Materials and methods The study population consisted of two groups: subjects with caries in primary teeth aged 2-5 years and adolescents with caries in permanent teeth aged 12-15 years. Age-matched controls were included in both groups. The decayed, missing, and filled teeth for primary teeth/decayed, missing, and filled teeth for permanent teeth (dmft/DMFT) index score was recorded according to World Health Organization (WHO) protocol. Dental biofilm samples were obtained from tooth sites under sterile conditions and placed in sterile transport media. Inoculation was performed on specific media, colonies were counted, and streptococci species were identified. Results In subjects with primary dentition caries, the streptococci species identified were Streptococcus mutans (S. mutans), S. sobrinus, S. mitis, S. rattus, and S. sanguis. In subjects with caries in permanent teeth, S. salivarius, Enterococcus faecalis (E. faecalis), S. mitis, and S. agnosus were seen in addition to S. mutans and S. sobrinus. The levels of mutans streptococci colony-forming units (CFU) were significantly higher in the primary caries group in children (p < 0.01). However, the CFU of streptococci in the healthy control group in children was not statistically different from the CFU/mL of streptococci in the healthy control group in adolescents. Conclusion A significant difference (p < 0.01) in the streptococci species profile was observed between primary and permanent teeth with caries. How to cite this article Bhardwaj SB, Sharma U, Mehta M, et al. Streptococci Biotypes in Primary and Permanent Caries: A Case-Control Study. Int J Clin Pediatr Dent 2024;17(9):1014-1017.
Collapse
Affiliation(s)
- Sonia B Bhardwaj
- Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Urvashi Sharma
- Department of Pedodontics and Preventive Dentistry, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Manjula Mehta
- Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Jyoti Sharma
- Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Davison C, Tallman S, de Ste-Croix M, Antonio M, Oggioni MR, Kwambana-Adams B, Freund F, Beleza S. Long-term evolution of Streptococcus mitis and Streptococcus pneumoniae leads to higher genetic diversity within rather than between human populations. PLoS Genet 2024; 20:e1011317. [PMID: 38843312 PMCID: PMC11185502 DOI: 10.1371/journal.pgen.1011317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/18/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.
Collapse
Affiliation(s)
- Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sam Tallman
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan de Ste-Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Welcome Programme, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabian Freund
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Alves LA, Naveed H, Franco EM, Garcia MT, Freitas VA, Junqueira JC, Bastos DC, Araujo TLS, Chen T, Mattos-Graner RO. PepO and CppA modulate Streptococcus sanguinis susceptibility to complement immunity and virulence. Virulence 2023; 14:2239519. [PMID: 37563831 PMCID: PMC10424592 DOI: 10.1080/21505594.2023.2239519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Streptococcus sanguinis is a ubiquitous commensal species of the oral cavity commonly involved as an opportunistic pathogen in cardiovascular infections. In this study, we investigated the functions of endopeptidase O (PepO) and a C3-degrading protease (CppA) in the systemic virulence of S. sanguinis. Isogenic mutants of pepO and cppA obtained in strain SK36 showed increased susceptibility to C3b deposition and to opsonophagocytosis by human polymorphonuclear neutrophils (PMN). These mutants differ, however, in their profiles of binding to serum amyloid P component (SAP) and C1q, whereas both showed reduced interaction with C4b-binding protein (C4BP) and/or factor H (FH) regulators as compared to SK36. The two mutants showed defects in ex vivo persistence in human blood, serum-mediated invasion of HCAEC endothelial cells, and virulence in a Galleria mellonella infection model. The transcriptional activities of pepO and cppA, assessed by RT-qPCR in nine wild-type strains, further indicated strain-specific profiles of pepO/cppA expression. Moreover, non-conserved amino acid substitutions were detected among the strains, mostly in CppA. Phylogenetic comparisons with homologues of streptococcal species of the oral and oropharyngeal sites suggested that S. sanguinis PepO and CppA have independent ancestralities. Thus, this study showed that PepO and CppA are complement evasion proteins expressed by S. sanguinis in a strain-specific manner, which are required for multiple functions associated with cardiovascular virulence.
Collapse
Affiliation(s)
- Lívia A. Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Hassan Naveed
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Eduardo M. Franco
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Victor A. Freitas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Juliana C. Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Débora C. Bastos
- Department of Biosciences, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
- Department of Cell Biology, São Leopoldo Mandic Medical School, Campinas, SP, Brazil
| | - Thaís L. S. Araujo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Treerat P, Anderson D, Giacaman RA, Merritt J, Kreth J. Glycerol metabolism supports oral commensal interactions. THE ISME JOURNAL 2023; 17:1116-1127. [PMID: 37169870 PMCID: PMC10284889 DOI: 10.1038/s41396-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
During oral biofilm development, interspecies interactions drive species distribution and biofilm architecture. To understand what molecular mechanisms determine these interactions, we used information gained from recent biogeographical investigations demonstrating an association of corynebacteria with streptococci. We previously reported that Streptococcus sanguinis and Corynebacterium durum have a close relationship through the production of membrane vesicle and fatty acids leading to S. sanguinis chain elongation and overall increased fitness supporting their commensal state. Here we present the molecular mechanisms of this interspecies interaction. Coculture experiments for transcriptomic analysis identified several differentially expressed genes in S. sanguinis. Due to its connection to fatty acid synthesis, we focused on the glycerol-operon. We further explored the differentially expressed type IV pili genes due to their connection to motility and biofilm adhesion. Gene inactivation of the glycerol kinase glpK had a profound impact on the ability of S. sanguinis to metabolize C. durum secreted glycerol and impaired chain elongation important for their interaction. Investigations on the effect of type IV pili revealed a reduction of S. sanguinis twitching motility in the presence of C. durum, which was caused by a decrease in type IV pili abundance on the surface of S. sanguinis as determined by SEM. In conclusion, we identified that the ability to metabolize C. durum produced glycerol is crucial for the interaction of C. durum and S. sanguinis. Reduced twitching motility could lead to a closer interaction of both species, supporting niche development in the oral cavity and potentially shaping symbiotic health-associated biofilm communities.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| | - David Anderson
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Bauer R, Haider D, Grempels A, Roscher R, Mauerer S, Spellerberg B. Diversity of CRISPR-Cas type II-A systems in Streptococcus anginosus. Front Microbiol 2023; 14:1188671. [PMID: 37396379 PMCID: PMC10310304 DOI: 10.3389/fmicb.2023.1188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Streptococcus anginosus is a commensal Streptococcal species that is often associated with invasive bacterial infections. However, little is known about its molecular genetic background. Many Streptococcal species, including S. anginosus, harbor clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. A CRISPR-Cas type II-A system as well as a type II-C system have been reported for this species. To characterize the CRISPR-Cas type II systems of S. anginosus in more detail, we conducted a phylogenetic analysis of Cas9 sequences from CRISPR-Cas type II systems with a special focus on streptococci and S. anginosus. In addition, a phylogenetic analysis of S. anginosus strains based on housekeeping genes included in MLST analysis, was performed. All analyzed Cas9 sequences of S. anginosus clustered with the Cas9 sequences of CRISPR type II-A systems, including the Cas9 sequences of S. anginosus strains reported to harbor a type II-C system. The Cas9 genes of the CRISPR-Cas type II-C systems of other bacterial species separated into a different cluster. Moreover, analyzing the CRISPR loci found in S. anginosus, two distinct csn2 genes could be detected, a short form showing high similarity to the canonical form of the csn2 gene present in S. pyogenes. The second CRISPR type II locus of S. anginosus contained a longer variant of csn2 with close similarities to a csn2 gene that has previously been described in Streptococcus thermophilus. Since CRISPR-Cas type II-C systems do not contain a csn2 gene, the S. anginosus strains reported to have a CRISPR-Cas type II-C system appear to carry a variation of CRISPR-Cas type II-A harboring a long variant of csn2.
Collapse
|
10
|
Joyce LR, Youngblom MA, Cormaty H, Gartstein E, Barber KE, Akins RL, Pepperell CS, Palmer KL. Comparative Genomics of Streptococcus oralis Identifies Large Scale Homologous Recombination and a Genetic Variant Associated with Infection. mSphere 2022; 7:e0050922. [PMID: 36321824 PMCID: PMC9769543 DOI: 10.1128/msphere.00509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
The viridans group streptococci (VGS) are a large consortium of commensal streptococci that colonize the human body. Many species within this group are opportunistic pathogens causing bacteremia and infective endocarditis (IE), yet little is known about why some strains cause invasive disease. Identification of virulence determinants is complicated by the difficulty of distinguishing between the closely related species of this group. Here, we analyzed genomic data from VGS that were isolated from blood cultures in patients with invasive infections and oral swabs of healthy volunteers and then determined the best-performing methods for species identification. Using whole-genome sequence data, we characterized the population structure of a diverse sample of Streptococcus oralis isolates and found evidence of frequent recombination. We used multiple genome-wide association study tools to identify candidate determinants of invasiveness. These tools gave consistent results, leading to the discovery of a single synonymous single nucleotide polymorphism (SNP) that was significantly associated with invasiveness. This SNP was within a previously undescribed gene that was conserved across the majority of VGS species. Using the growth in the presence of human serum and a simulated infective endocarditis vegetation model, we were unable to identify a phenotype for the enriched allele in laboratory assays, suggesting a phenotype may be specific to natural infection. These data highlighted the power of analyzing natural populations for gaining insight into pathogenicity, particularly for organisms with complex population structures like the VGS. IMPORTANCE The viridians group streptococci (VGS) are a large collection of closely related commensal streptococci, with many being opportunistic pathogens causing invasive diseases, such as bacteremia and infective endocarditis. Little is known about virulence determinants in these species, and there is a distinct lack of genomic information available for the VGS. In this study, we collected VGS isolates from invasive infections and healthy volunteers and performed whole-genome sequencing for a suite of downstream analyses. We focused on a diverse sample of Streptococcus oralis genomes and identified high rates of recombination in the population as well as a single genome variant highly enriched in invasive isolates. The variant lies within a previously uncharacterized gene, nrdM, which shared homology with the anaerobic ribonucleoside triphosphate reductase, nrdD, and was highly conserved among VGS. This work increased our knowledge of VGS genomics and indicated that differences in virulence potential among S. oralis isolates were, at least in part, genetically determined.
Collapse
Affiliation(s)
- Luke R. Joyce
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Madison A. Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Harshini Cormaty
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Evelyn Gartstein
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Katie E. Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, University of Mississippi, Jackson, Mississippi, USA
| | | | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Achtman M, Zhou Z, Charlesworth J, Baxter L. EnteroBase: hierarchical clustering of 100 000s of bacterial genomes into species/subspecies and populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210240. [PMID: 35989609 PMCID: PMC9393565 DOI: 10.1098/rstb.2021.0240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The definition of bacterial species is traditionally a taxonomic issue while bacterial populations are identified by population genetics. These assignments are species specific, and depend on the practitioner. Legacy multilocus sequence typing is commonly used to identify sequence types (STs) and clusters (ST Complexes). However, these approaches are not adequate for the millions of genomic sequences from bacterial pathogens that have been generated since 2012. EnteroBase (http://enterobase.warwick.ac.uk) automatically clusters core genome MLST allelic profiles into hierarchical clusters (HierCC) after assembling annotated draft genomes from short-read sequences. HierCC clusters span core sequence diversity from the species level down to individual transmission chains. Here we evaluate HierCC's ability to correctly assign 100 000s of genomes to the species/subspecies and population levels for Salmonella, Escherichia, Clostridoides, Yersinia, Vibrio and Streptococcus. HierCC assignments were more consistent with maximum-likelihood super-trees of core SNPs or presence/absence of accessory genes than classical taxonomic assignments or 95% ANI. However, neither HierCC nor ANI were uniformly consistent with classical taxonomy of Streptococcus. HierCC was also consistent with legacy eBGs/ST Complexes in Salmonella or Escherichia and with O serogroups in Salmonella. Thus, EnteroBase HierCC supports the automated identification of and assignment to species/subspecies and populations for multiple genera. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
|
12
|
Beta-lactam antibiotics and viridans group streptococci. Rev Argent Microbiol 2022; 54:335-343. [DOI: 10.1016/j.ram.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
|
13
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
14
|
Alves LA, Salvatierra GC, Freitas VA, Höfling JF, Bastos DC, Araujo TLS, Mattos-Graner RO. Diversity in Phenotypes Associated With Host Persistence and Systemic Virulence in Streptococcus sanguinis Strains. Front Microbiol 2022; 13:875581. [PMID: 35509310 PMCID: PMC9058168 DOI: 10.3389/fmicb.2022.875581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus sanguinis is a pioneer commensal species of dental biofilms, abundant in different oral sites and commonly associated with opportunist cardiovascular infections. In this study, we addressed intra-species functional diversity to better understand the S. sanguinis commensal and pathogenic lifestyles. Multiple phenotypes were screened in nine strains isolated from dental biofilms or from the bloodstream to identify conserved and strain-specific functions involved in biofilm formation and/or persistence in oral and cardiovascular tissues. Strain phenotypes of biofilm maturation were independent of biofilm initiation phenotypes, and significantly influenced by human saliva and by aggregation mediated by sucrose-derived exopolysaccharides (EPS). The production of H2O2 was conserved in most strains, and consistent with variations in extracellular DNA (eDNA) production observed in few strains. The diversity in complement C3b deposition correlated with the rates of opsonophagocytosis by human PMN and was influenced by culture medium and sucrose-derived EPS in a strain-specific fashion. Differences in C3b deposition correlated with strain binding to recognition proteins of the classical pathway, C1q and serum amyloid protein (SAP). Importantly, differences in strain invasiveness into primary human coronary artery endothelial cells (HCAEC) were significantly associated with C3b binding, and in a lesser extent, with binding to host glycoproteins (such as fibrinogen, plasminogen, fibronectin, and collagen). Thus, by identifying conserved and strain-specific phenotypes involved in host persistence and systemic virulence, this study indicates potential new functions involved in systemic virulence and highlights the need of including a wider panel of strains in molecular studies to understand S. sanguinis biology.
Collapse
Affiliation(s)
- Livia A. Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Geovanny C. Salvatierra
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Victor A. Freitas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - José F. Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Débora C. Bastos
- Department of Biosciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
- São Leopoldo Mandic Medical School, Campinas, Brazil
| | - Thaís L. S. Araujo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
- *Correspondence: Renata O. Mattos-Graner,
| |
Collapse
|
15
|
Mechanisms underlying interactions between two abundant oral commensal bacteria. THE ISME JOURNAL 2022; 16:948-957. [PMID: 34732850 PMCID: PMC8940909 DOI: 10.1038/s41396-021-01141-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Complex polymicrobial biofilm communities are abundant in nature particularly in the human oral cavity where their composition and fitness can affect health. While the study of these communities during disease is essential and prevalent, little is known about interactions within the healthy plaque community. Here we describe interactions between two of the most abundant species in this healthy microbiome, Haemophilus parainfluenzae and Streptococcus mitis. We discovered that H. parainfluenzae typically exists adjacent to mitis group streptococci in vivo with which it is also positively correlated based on microbiome data. By comparing in vitro coculture data to ex vivo microscopy we revealed that this co-occurrence is density dependent and further influenced by H2O2 production. We discovered that H. parainfluenzae utilizes a more redundant, multifactorial response to H2O2 than related microorganisms and that this system's integrity enhances streptococcal fitness. Our results indicate that mitis group streptococci are likely the in vivo source of NAD for H. parainfluenzae and also evoke patterns of carbon utilization in vitro for H. parainfluenzae similar to those observed in vivo. Our findings describe mechanistic interactions between two of the most abundant and prevalent members of healthy supragingival plaque that contribute to their in vivo survival.
Collapse
|
16
|
Jia J, Shi W, Dong F, Meng Q, Yuan L, Chen C, Yao K. Identification and molecular epidemiology of routinely determined Streptococcus pneumoniae with negative Quellung reaction results. J Clin Lab Anal 2022; 36:e24293. [PMID: 35170080 PMCID: PMC8993597 DOI: 10.1002/jcla.24293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Some streptococci strains identified as Streptococcus pneumoniae (S. pneumoniae) by routine clinical methods exhibiting negative Quellung reaction results may belong to other species of viridans group streptococci or non‐typeable S. pneumoniae. The purpose of this study was to investigate the identification and molecular characteristics of S. pneumoniae with negative Quellung reaction results. Methods One hundred and five isolates identified as S. pneumoniae using routine microbiological methods with negative Quellung reaction results were included. Multilocus sequence analysis (MLSA) was used as a gold standard in species identification, and the capacity of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) in identification was evaluated. Capsular genes and sequence types of S. pneumoniae isolates were determined by sequential multiplex PCR and multilocus sequence typing. Antimicrobial susceptibility patterns were determined via broth microdilution with a commercialized 96‐well plate. Results Among the isolates, 81 were identified as S. pneumoniae and 24 were S. pseudopneumoniae by MLSA. MALDI‐TOF MS misidentified six S. pneumoniae isolates as S. pseudopneumoniae and nine S. pseudopneumoniae isolates as S. pneumoniae or S. mitis/S. oralis. Thirty‐one sequence types (STs) were detected for these 81 S. pneumoniae isolates, and the dominant ST was ST‐bj12 (16, 19.8%). The non‐susceptibility rates of S. pseudopneumoniae were comparable to those of NESp strains. Conclusions Some S. pneumoniae isolates identified by routine methods were S. pseudopneumoniae. Most NESp strains have a different genetic background compared with capsulated S. pneumoniae strains. The resistance patterns of S. pseudopneumoniae against common antibiotics were comparable to those of NESp.
Collapse
Affiliation(s)
- Ju Jia
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei Shi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Fang Dong
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Qingying Meng
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Changhui Chen
- Department of Pediatrics, Youyang County People's Hospital, Chongqing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Turek EM, Cox MJ, Hunter M, Hui J, James P, Willis-Owen SAG, Cuthbertson L, James A, Musk AW, Moffatt MF, Cookson WOCM. Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine 2021; 71:103538. [PMID: 34425308 PMCID: PMC8387768 DOI: 10.1016/j.ebiom.2021.103538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Normal airway microbial communities play a central role in respiratory health but are poorly characterized. Cigarette smoking is the dominant global environmental influence on lung function, and asthma has become the most prevalent chronic respiratory disease worldwide. Both conditions have major microbial components that are incompletely defined. METHODS We investigated airway bacterial communities in a general population sample of 529 Australian adults. Posterior oropharyngeal swabs were analyzed by sequencing of the 16S rRNA gene. The microbiota were characterized according to their prevalence, abundance and network memberships. FINDINGS The microbiota were similar across the general population, and were strongly organized into co-abundance networks. Smoking was associated with diversity loss, negative effects on abundant taxa, profound alterations to network structure and expansion of Streptococcus spp. By contrast, the asthmatic microbiota were selectively affected by an increase in Neisseria spp. and by reduced numbers of low abundance but prevalent organisms. INTERPRETATION Our study shows that the healthy airway microbiota in this population were contained within a highly structured ecosystem, suggesting balanced relationships between the microbiome and human host factors. The marked abnormalities in smokers may contribute to chronic obstructive pulmonary disease (COPD) and lung cancer. The narrow spectrum of abnormalities in asthmatics encourages investigation of damaging and protective effects of specific bacteria. FUNDING The study was funded by the Asmarley Trust and a Wellcome Joint Senior Investigator Award to WOCC and MFM (WT096964MA and WT097117MA). The Busselton Healthy Ageing Study is supported by the Government of Western Australia (Office of Science, Department of Health) the City of Busselton, and private donations.
Collapse
Affiliation(s)
- Elena M Turek
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Michael J Cox
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia; PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, Australia
| | - Phillip James
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Saffron A G Willis-Owen
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Leah Cuthbertson
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Alan James
- Busselton Population Medical Research Institute, Western Australia, Australia; Department of Pulmonary Physiology, Sir Charles Gairdner Hospital, UWA Medical School, University of Western Australia, Australia
| | - A William Musk
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia; Department of Respiratory Medicine Sir Charles Gairdner Hospital, UWA Medical School, University of Western Australia, Australia
| | - Miriam F Moffatt
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom.
| | - William O C M Cookson
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom.
| |
Collapse
|
18
|
Gisch N, Peters K, Thomsen S, Vollmer W, Schwudke D, Denapaite D. Commensal Streptococcus mitis produces two different lipoteichoic acids of type I and type IV. Glycobiology 2021; 31:1655-1669. [PMID: 34314482 DOI: 10.1093/glycob/cwab079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen S. pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of β-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), amongst S. mitis and S. pseudopneumoniae strains.
Collapse
Affiliation(s)
- Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Simone Thomsen
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site: Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
19
|
Jensen CS, Dargis R, Shewmaker P, Nielsen XC, Christensen JJ. Identification of Streptococcus pseudopneumoniae and other mitis group streptococci using matrix assisted laser desorption/ionization - time of flight mass spectrometry. Diagn Microbiol Infect Dis 2021; 101:115487. [PMID: 34339919 DOI: 10.1016/j.diagmicrobio.2021.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
This study evaluated the ability of the MALDI-ToF MS from Bruker Daltonics to identify clinical Mitis-Group-Streptococcus isolates with a focus on Streptococcus pseudopneumoniae. The results were analyzed using the standard log(score) and the previously published list(score). Importantly, using the log(score) no misidentifications occurred and 27 of 29 (93%) S. pneumoniae and 27 of 30 (90%) S. oralis strains were identified, but only 1 of 31 (3%) S. pseudopneumoniae and 1 of 13 (8%) S. mitis strains were identified. However, our results show that 30 of 31 S. pseudopneumoniae strains had a S. pseudopneumoniae Main Spectral Profiles within the 3 best matches. Using the list(score) all S. oralis and S. pneumoniae strains were identified correctly, but list(score) misidentified 10 S. pseudopneumoniae and 5 S. mitis. We propose to use the log(score) for identification of S. pneumoniae, S. pseudopneumoniae, S. mitis and S. oralis, but for some strains additional testing may be needed.
Collapse
Affiliation(s)
| | - Rimtas Dargis
- The Regional Department of Clinical Microbiology, Region Zealand, Denmark
| | | | | | - Jens Jørgen Christensen
- The Regional Department of Clinical Microbiology, Region Zealand, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
20
|
Streptococcus pseudopneumoniae: Use of Whole-Genome Sequences To Validate Species Identification Methods. J Clin Microbiol 2021; 59:JCM.02503-20. [PMID: 33208473 DOI: 10.1128/jcm.02503-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
A correct identification of Streptococcus pseudopneumoniae is a prerequisite for investigating the clinical impact of the bacterium. The identification has traditionally relied on phenotypic methods. However, these phenotypic traits have been shown to be unreliable, with some S. pseudopneumoniae strains giving conflicting results. Therefore, sequence-based identification methods have increasingly been used for identification of S. pseudopneumoniae In this study, we used 64 S. pseudopneumoniae strains, 59 S. pneumoniae strains, 22 S. mitis strains, 24 S. oralis strains, 6 S. infantis strains, and 1 S. peroris strain to test the capability of three single genes (rpoB, gyrB, and recA), two multilocus sequence analysis (MLSA) schemes, the single nucleotide polymorphism (SNP)-based phylogeny tool CSI phylogeny, a k-mer-based identification method (KmerFinder), average nucleotide identity (ANI) using fastANI, and core genome analysis to identify S. pseudopneumoniae Core genome analysis and CSI phylogeny were able to cluster all strains into distinct clusters related to their respective species. It was not possible to identify all S. pseudopneumoniae strains correctly using only one of the single genes. The MLSA schemes were unable to identify some of the S. pseudopneumoniae strains, which could be misidentified. KmerFinder identified all S. pseudopneumoniae strains but misidentified one S. mitis strain as S. pseudopneumoniae, and fastANI differentiated between S. pseudopneumoniae and S. pneumoniae using an ANI cutoff of 96%.
Collapse
|
21
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sadowy E, Hryniewicz W. Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods. Eur J Clin Microbiol Infect Dis 2020; 39:2247-2256. [PMID: 32710352 PMCID: PMC7669753 DOI: 10.1007/s10096-020-03991-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The Mitis group of streptococci includes an important human pathogen, Streptococcus pneumoniae (pneumococcus) and about 20 other related species with much lower pathogenicity. In clinical practice, some representatives of these species, especially Streptococcus pseudopneumoniae and Streptococcus mitis, are sometimes mistaken for S. pneumoniae based on the results of classical microbiological methods, such as optochin susceptibility and bile solubility. Several various molecular approaches that address the issue of correct identification of pneumococci and other Mitis streptococci have been proposed and are discussed in this review, including PCR- and gene sequencing-based tests as well as new developments in the genomic field that represents an important advance in our understanding of relationships within the Mitis group.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
23
|
Uddén F, Filipe M, Slotved HC, Yamba-Yamba L, Fuursted K, Pintar Kuatoko P, Larsson M, Bjurgert J, Månsson V, Pelkonen T, Reimer Å, Riesbeck K. Pneumococcal carriage among children aged 4 - 12 years in Angola 4 years after the introduction of a pneumococcal conjugate vaccine. Vaccine 2020; 38:7928-7937. [PMID: 33143954 DOI: 10.1016/j.vaccine.2020.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Children in Angola are affected by a high burden of disease caused by pneumococcal infections. The 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the childhood immunization programme in 2013 but the serotype distribution of Streptococcus pneumoniae and antimicrobial susceptibility patterns are unknown. We did a cross-sectional nasopharyngeal carriage study in Luanda and Saurimo, Angola (PCV13 3rd dose coverage 67% and 84%, respectively) during November to December 2017 comprising 940 children aged 4-12 years. The main objective was to assess vaccine serotype coverage and antimicrobial susceptibility rates for S. pneumoniae. Our secondary aim was to characterize colonizinig strains of Haemophilus influenzae and Moraxella catarrhalis. Pneumococcal colonization was found in 35% (95% CI 32-39%) of children (n = 332), with 41% of serotypes covered by PCV13. The most common serotypes were 3 (8%), 18C (6%), 23F (6%), 11A (6%), 34 (6%), 19F (5%) and 16 (5%). Carriage of H. influenzae and M. catarrhalis was detected in 13% (95% CI 11-15%) and 15% (95% CI 13-17%) of children, respectively. Non-susceptibility to penicillin was common among pneumococci (40%), particularly among PCV13-included serotypes (50% vs. 33%; p = 0.003), although the median minimal inhibitory concentration was low (0.19 µg/mL, IQR 0.13-0.25 µg/mL). Most pneumococci and H. influenzae were susceptible to amoxicillin (99% and 88%, respectively). Furthermore, resistance to trimethoprim-sulfamethoxazole was>70% among all three species. Multidrug-resistant pneumococci (non-susceptible to ≥ 3 antibiotics; 7% [n = 24]) were further studied with whole genome sequencing to investigate clonality as an underlying cause for this phenotype. No clearly dominating clone(s) were, however, detected. The results indicate that continued use of PCV13 may have positive direct and herd effects on pneumococcal infections in Angola as carriage of vaccine serotypes was common in the non-vaccinated age group. Finally, amoxicillin is assessed to be a feasible empirical treatment of respiratory tract infections in Angola.
Collapse
Affiliation(s)
- Fabian Uddén
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| | - Matuba Filipe
- ORL-department, Hospital Josina Machel, Luanda, Angola; Faculty of Medicine, Agostinho Neto University, Luanda, Angola
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Linda Yamba-Yamba
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Palmira Pintar Kuatoko
- ORL-department, Hospital Josina Machel, Luanda, Angola; Faculty of Medicine, Agostinho Neto University, Luanda, Angola
| | - Måns Larsson
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden
| | - Jonas Bjurgert
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden
| | - Viktor Månsson
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| | - Tuula Pelkonen
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | - Åke Reimer
- ENT-Outpatient Department, Slottsstadens Läkarhus, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical microbiology, Department of Translational Medicine, Faculty of Medicine, Lund university, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
24
|
Sadowy E, Bojarska A, Kuch A, Skoczyńska A, Jolley KA, Maiden MCJ, van Tonder AJ, Hammerschmidt S, Hryniewicz W. Relationships among streptococci from the mitis group, misidentified as Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis 2020; 39:1865-1878. [PMID: 32409955 PMCID: PMC7497345 DOI: 10.1007/s10096-020-03916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/24/2020] [Indexed: 01/18/2023]
Abstract
The aim of our study was to investigate phenotypic and genotypic features of streptococci misidentified (misID) as Streptococcus pneumoniae, obtained over 20 years from hospital patients in Poland. Sixty-three isolates demonstrating microbiological features typical for pneumococci (optochin susceptibility and/or bile solubility) were investigated by phenotypic tests, lytA and 16S rRNA gene polymorphism and whole-genome sequencing (WGS). All isolates had a 6-bp deletion in the lytA 3' terminus, characteristic for Mitis streptococc and all but two isolates lacked the pneumococcal signature cytosine at nucleotide position 203 in the 16S rRNA genes. The counterparts of psaA and ply were present in 100% and 81.0% of isolates, respectively; the spn9802 and spn9828 loci were characteristic for 49.2% and 38.1% of isolates, respectively. Phylogenetic trees and networks, based on the multilocus sequence analysis (MLSA) scheme, ribosomal multilocus sequence typing (rMLST) scheme and core-genome analysis, clearly separated investigated isolates from S. pneumoniae and demonstrated the polyclonal character of misID streptococci, associated with the Streptococcus pseudopneumoniae and Streptococcus mitis groups. While the S. pseudopneumoniae clade was relatively well defined in all three analyses, only the core-genome analysis revealed the presence of another cluster comprising a fraction of misID streptococci and a strain proposed elsewhere as a representative of a novel species in the Mitis group. Our findings point to complex phylogenetic and taxonomic relationships among S. mitis-like bacteria and support the notion that this group may in fact consist of several distinct species.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Agnieszka Bojarska
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
25
|
Abstract
Streptococcus pneumoniae (the pneumococcus) carriage is commonly used to measure effects of pneumococcal vaccines. Based on findings from culture-based studies, the World Health Organization recommends both nasopharyngeal (NP) and oropharyngeal (OP) sampling for detecting adult carriage. Given evidence of potential confounding by other streptococci, we evaluated molecular methods for pneumococcal identification and serotyping from 250 OP samples collected from adults in Fiji, using paired NP samples for comparison. Samples were screened using lytA quantitative PCR (qPCR), as well as pneumococcal identification and serotyping conducted by DNA microarray. A subset of OP samples were characterized by latex sweep agglutination and multiplex PCR. Alternate qPCR assays (piaB and bguR) for pneumococcal identification were evaluated. The lytA qPCR was less specific and had poor positive predictive value (PPV) in OP samples (88% and 26%, respectively) compared with NP samples (95% and 64%, respectively). Using additional targets piaB and/or bguR improved qPCR specificity in OP, although the PPV (42 to 53%) was still poor. Using microarray, we found that 102/107 (95%) of OP samples contained nonpneumococcal streptococci with partial or divergent complements of pneumococcal capsule genes. We explored 91 colonies isolated from 11 OP samples using various techniques, including multiplex PCR, latex agglutination, and microarray. We found that nonpneumococcal streptococci contribute to false positives in pneumococcal serotyping and may also contribute to spurious identification by qPCR. Our results highlight that molecular approaches should include multiple loci to minimize false-positive results when testing OP samples. Regardless of method, pneumococcal identification and serotyping results from OP samples should be interpreted with caution.IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a significant global pathogen. Accurate identification and serotyping are vital. In contrast with World Health Organization recommendations based on culture methods, we demonstrate that pneumococcal identification and serotyping with molecular methods are affected by sample type. Results from oropharyngeal samples from adults were often inaccurate. This is particularly important for assessment of vaccine impact using carriage studies, particularly in low- and middle-income countries where there are significant barriers for disease surveillance.
Collapse
|
26
|
Shanmugam K, Sarveswari HB, Udayashankar A, Swamy SS, Pudipeddi A, Shanmugam T, Solomon AP, Neelakantan P. Guardian genes ensuring subsistence of oral Streptococcus mutans. Crit Rev Microbiol 2020; 46:475-491. [PMID: 32720594 DOI: 10.1080/1040841x.2020.1796579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the substantial research advancements on oral diseases, dental caries remains a major healthcare burden. A disease of microbial dysbiosis, dental caries is characterised by the formation of biofilms that assist demineralisation and destruction of the dental hard tissues. While it is well understood that this is a multi-kingdom biofilm-mediated disease, it has been elucidated that acid producing and acid tolerant bacteria play pioneering roles in the process. Specifically, Streptococcus mutans houses major virulence pathways that enable it to thrive in the oral cavity and cause caries. This pathogen adheres to the tooth substrate, forms biofilms, resists external stress, produces acids, kills closely related species, and survives the acid as well as the host clearance mechanisms. For an organism to be able to confer such virulence, it requires a large and complex gene network which synergise to establish disease. In this review, we have charted how these multi-faceted genes control several caries-related functions of Streptococcus mutans. In a futuristic thinking approach, we also briefly discuss the potential roles of omics and machine learning, to ease the study of non-functional genes that may play a major role and enable the integration of experimental data.
Collapse
Affiliation(s)
- Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akshaya Udayashankar
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shogan Sugumar Swamy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Tamilarasi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
27
|
Singanayagam A, Glanville N, Cuthbertson L, Bartlett NW, Finney LJ, Turek E, Bakhsoliani E, Calderazzo MA, Trujillo-Torralbo MB, Footitt J, James PL, Fenwick P, Kemp SV, Clarke TB, Wedzicha JA, Edwards MR, Moffatt M, Cookson WO, Mallia P, Johnston SL. Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Sci Transl Med 2020; 11:11/507/eaav3879. [PMID: 31462509 DOI: 10.1126/scitranslmed.aav3879] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infection commonly complicates inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD). The mechanisms of increased infection susceptibility and how use of the commonly prescribed therapy inhaled corticosteroids (ICS) accentuates pneumonia risk in COPD are poorly understood. Here, using analysis of samples from patients with COPD, we show that ICS use is associated with lung microbiota disruption leading to proliferation of streptococcal genera, an effect that could be recapitulated in ICS-treated mice. To study mechanisms underlying this effect, we used cellular and mouse models of streptococcal expansion with Streptococcus pneumoniae, an important pathogen in COPD, to demonstrate that ICS impairs pulmonary clearance of bacteria through suppression of the antimicrobial peptide cathelicidin. ICS impairment of pulmonary immunity was dependent on suppression of cathelicidin because ICS had no effect on bacterial loads in mice lacking cathelicidin (Camp -/-) and exogenous cathelicidin prevented ICS-mediated expansion of streptococci within the microbiota and improved bacterial clearance. Suppression of pulmonary immunity by ICS was mediated by augmentation of the protease cathepsin D. Collectively, these data suggest a central role for cathepsin D/cathelicidin in the suppression of antibacterial host defense by ICS in COPD. Therapeutic restoration of cathelicidin to boost antibacterial immunity and beneficially modulate the lung microbiota might be an effective strategy in COPD.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Nicholas Glanville
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.,Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW 2305, Australia
| | - Lydia J Finney
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Elena Turek
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Eteri Bakhsoliani
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | | | | | - Joseph Footitt
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Phillip L James
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Peter Fenwick
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Samuel V Kemp
- Royal Brompton Hospital, Fulham Road, London SW2 6NP, UK
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Michael R Edwards
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Miriam Moffatt
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - William O Cookson
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Patrick Mallia
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Sebastian L Johnston
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
28
|
Gonzales-Siles L, Karlsson R, Schmidt P, Salvà-Serra F, Jaén-Luchoro D, Skovbjerg S, Moore ERB, Gomila M. A Pangenome Approach for Discerning Species-Unique Gene Markers for Identifications of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Front Cell Infect Microbiol 2020; 10:222. [PMID: 32509595 PMCID: PMC7248185 DOI: 10.3389/fcimb.2020.00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 01/28/2023] Open
Abstract
Correct identifications of isolates and strains of the Mitis-Group of the genus Streptococcus are particularly difficult, due to high genetic similarity, resulting from horizontal gene transfer and homologous recombination, and unreliable phenotypic and genotypic biomarkers for differentiating the species. Streptococcus pneumoniae and Streptococcus pseudopneumoniae are the most closely related species of the clade. In this study, publicly-available genome sequences for Streptococcus pneumoniae and S. pseudopneumoniae were analyzed, using a pangenomic approach, to find candidates for species-unique gene markers; ten species-unique genes for S. pneumoniae and nine for S. pseudopneumoniae were identified. These species-unique gene marker candidates were verified by PCR assays for identifying S. pneumoniae and S. pseudopneumoniae strains isolated from clinical samples. All determined species-level unique gene markers for S. pneumoniae were detected in all S. pneumoniae clinical isolates, whereas fewer of the unique S. pseudopneumoniae gene markers were present in more than 95% of the clinical isolates. In parallel, taxonomic identifications of the clinical isolates were confirmed, using conventional optochin sensitivity testing, targeted PCR-detection for the “Xisco” gene, as well as genomic ANIb similarity analyses for the genome sequences of selected strains. Using mass spectrometry-proteomics, species-specific peptide matches were observed for four of the S. pneumoniae gene markers and for three of the S. pseudopneumoniae gene markers. Application of multiple species-level unique biomarkers of S. pneumoniae and S. pseudopneumoniae, is proposed as a protocol for the routine clinical laboratory for improved, reliable differentiation, and identification of these pathogenic and commensal species.
Collapse
Affiliation(s)
- Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Patrik Schmidt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biology-Microbiology, Universitat de les Illes Balears, Palma, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Gomila
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma, Spain
| |
Collapse
|
29
|
Issa E, Salloum T, Tokajian S. From Normal Flora to Brain Abscesses: A Review of Streptococcus intermedius. Front Microbiol 2020; 11:826. [PMID: 32457718 PMCID: PMC7221147 DOI: 10.3389/fmicb.2020.00826] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus intermedius is a β-hemolytic Gram-positive member of the Streptococcus anginosus group (SAG). Despite being a part of the normal microbiota, it is one of the most common pathogens associated with brain and liver abscesses and thoracic empyema, increasing as a result the morbidity and mortality rates in affected patients. Though there are numerous published case reports on S. intermedius infections, it is still understudied compared to other SAG members. Our knowledge of the genomic factors contributing to its dissemination to the brain and abscess development is also limited to few characterized genes. In this review, we summarize our current knowledge on S. intermedius identification methods, virulence factors, and insight provided by the whole-genome and correlate patients’ metadata, symptoms, and disease outcome with S. intermedius infections in 101 recent case reports obtained from PubMed. This combined information highlights the gaps in our understanding of S. intermedius pathogenesis, suggesting future research directions to unveil the factors contributing to abscess development.
Collapse
Affiliation(s)
- Elio Issa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
30
|
Imai K, Nemoto R, Kodana M, Tarumoto N, Sakai J, Kawamura T, Ikebuchi K, Mitsutake K, Murakami T, Maesaki S, Fujiwara T, Hayakawa S, Hoshino T, Seki M, Maeda T. Rapid and Accurate Species Identification of Mitis Group Streptococci Using the MinION Nanopore Sequencer. Front Cell Infect Microbiol 2020; 10:11. [PMID: 32083020 PMCID: PMC7002467 DOI: 10.3389/fcimb.2020.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Differentiation between mitis group streptococci (MGS) bacteria in routine laboratory tests has become important for obtaining accurate epidemiological information on the characteristics of MGS and understanding their clinical significance. The most reliable method of MGS species identification is multilocus sequence analysis (MLSA) with seven house-keeping genes; however, because this method is time-consuming, it is deemed unsuitable for use in most clinical laboratories. In this study, we established a scheme for identifying 12 species of MGS (S. pneumoniae, S. pseudopneumoniae, S. mitis, S. oralis, S. peroris, S. infantis, S. australis, S. parasanguinis, S. sinensis, S. sanguinis, S. gordonii, and S. cristatus) using the MinION nanopore sequencer (Oxford Nanopore Technologies, Oxford, UK) with the taxonomic aligner "What's in My Pot?" (WIMP; Oxford Nanopore's cloud-based analysis platform) and Kraken2 pipeline with the custom database adjusted for MGS species identification. The identities of the species in reference genomes (n = 514), clinical isolates (n = 31), and reference strains (n = 4) were confirmed via MLSA. The nanopore simulation reads were generated from reference genomes, and the optimal cut-off values for MGS species identification were determined. For 31 clinical isolates (S. pneumoniae = 8, S. mitis = 17 and S. oralis = 6) and 4 reference strains (S. pneumoniae = 1, S. mitis = 1, S. oralis = 1, and S. pseudopneumoniae = 1), a sequence library was constructed via a Rapid Barcoding Sequencing Kit for multiplex and real-time MinION sequencing. The optimal cut-off values for the identification of MGS species for analysis by WIMP and Kraken2 pipeline were determined. The workflow using Kraken2 pipeline with a custom database identified all 12 species of MGS, and WIMP identified 8 MGS bacteria except S. infantis, S. australis, S. peroris, and S. sinensis. The results obtained by MinION with WIMP and Kraken2 pipeline were consistent with the MGS species identified by MLSA analysis. The practical advantage of whole genome analysis using the MinION nanopore sequencer is that it can aid in MGS surveillance. We concluded that MinION sequencing with the taxonomic aligner enables accurate MGS species identification and could contribute to further epidemiological surveys.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Rina Nemoto
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Masahiro Kodana
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Toru Kawamura
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Kenji Ikebuchi
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Kotaro Mitsutake
- Department of Infectious Diseases and Infection Control, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Meikai University School of Dentistry, Sakado, Japan
| | - Mitsuko Seki
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Pediatric Dentistry, Meikai University School of Dentistry, Sakado, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
31
|
Bauer R, Neffgen N, Grempels A, Furitsch M, Mauerer S, Barbaqadze S, Haase G, Kestler H, Spellerberg B. Heterogeneity of Streptococcus anginosus ß-hemolysis in relation to CRISPR/Cas. Mol Oral Microbiol 2020; 35:56-65. [PMID: 31977149 DOI: 10.1111/omi.12278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
Streptococcus anginosus is a commensal of the oral mucosa that can cause severe invasive infections. A considerable proportion of Streptococcus anginosus strains are ß-hemolytic due to the presence of an SLS-like gene cluster. However, the majority of strains do not display ß-hemolysis. To investigate ß-hemolysin heterogeneity in S. anginosus, we determined the presence of sag genes and correlated it with the presence of CRISPR/Cas genes in a collection of ß-hemolytic and non-ß-hemolytic strains. All of the ß-hemolytic strains carried the sag gene cluster. In contrast to other streptococci, clinical S. anginosus strains that do not display ß-hemolysis do not harbor sag genes. Phylogenetic analysis of the ß-hemolytic strains revealed that they belong to two previously defined clusters within S. anginosus. Correlation with CRISPR/Cas genes showed a significant difference for the presence of CRISPR/Cas in ß-hemolytic versus non-ß-hemolytic isolates. The presence of the CRISPR/Cas type IIA or type IIC locus is associated with the absence of sag genes; in 65% of the non-ß-hemolytic strains a CRISPR/Cas locus was found, while only 24% of ß-hemolytic strains carry CRISPR/Cas genes. Further analysis of the spacer content of the CRISPR systems revealed the presence of multiple self-targeting sequences directed against S. anginosus genes. These results support the hypothesis that horizontal gene transfer is involved in the acquisition of ß-hemolysin genes and that CRISPR/Cas may limit DNA uptake in S. anginosus.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Nathalie Neffgen
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Aline Grempels
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Martina Furitsch
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Salome Barbaqadze
- General Microbiology Lab, Eliava Bacteriophage, Microbiology and Virology Institute, Tbilisi, Georgia
| | - Gerhard Haase
- LDZ Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
Sunnerhagen T, Törnell A, Vikbrant M, Nilson B, Rasmussen M. HANDOC: A Handy Score to Determine the Need for Echocardiography in Non-β-Hemolytic Streptococcal Bacteremia. Clin Infect Dis 2019; 66:693-698. [PMID: 29040411 DOI: 10.1093/cid/cix880] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Background Non-β-hemolytic streptococci (NBHS) can cause infective endocarditis (IE). Echocardiography is used to diagnose IE, but it is not known which patients with NBHS bacteremia should undergo echocardiography. Method Medical records of patients with NBHS bacteremia in southern Sweden from 2012 to 2014 were studied retrospectively. The patients were divided into 2 cohorts. In the first, correlations between the reported data and IE were studied. These variables were used to construct the HANDOC score, which was then validated in the second cohort. Results Three hundred thirty-nine patients with NBHS bacteremia were included in the first cohort, of whom 26 fulfilled the criteria for IE. Several factors differed significantly between the patients with IE and those without. Among these variables, the presence of Heart murmur or valve disease; Aetiology with the groups of Streptococcus mutans, Streptococcus bovis, Streptococcus sanguinis, or Streptococcus anginosus; Number of positive blood cultures ≥2; Duration of symptoms of 7 days or more; Only 1 species growing in blood cultures; and Community-acquired infection were chosen to form the HANDOC score. With a cutoff between 2 and 3 points, HANDOC had a sensitivity of 100% and specificity of 73% in the first cohort. When tested in the validation cohort (n = 399), the sensitivity was 100% and the specificity 76%. Conclusions HANDOC can be used in to identify patients with NBHS bacteremia who have a risk of IE so low that echocardiography can be omitted; therefore, its implementation might reduce the use of echocardiography.
Collapse
Affiliation(s)
- Torgny Sunnerhagen
- Department for Clinical Sciences Lund, Division of Infection Medicine, Medical Faculty, Lund University
| | - Amanda Törnell
- Department for Clinical Sciences Lund, Division of Infection Medicine, Medical Faculty, Lund University
| | - Maria Vikbrant
- Department for Clinical Sciences Lund, Division of Infection Medicine, Medical Faculty, Lund University
| | - Bo Nilson
- Clinical Microbiology, Labmedicin, Region Skåne, Lund.,Department of Laboratory Medicine Lund, Division of Medical Microbiology, Medical Faculty, Lund University
| | - Magnus Rasmussen
- Department for Clinical Sciences Lund, Division of Infection Medicine, Medical Faculty, Lund University.,Division for Infectious Diseases, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
34
|
Dayie NTKD, Tettey EY, Newman MJ, Bannerman E, Donkor ES, Labi AK, Slotved HC. Pneumococcal carriage among children under five in Accra, Ghana, five years after the introduction of pneumococcal conjugate vaccine. BMC Pediatr 2019; 19:316. [PMID: 31488088 PMCID: PMC6727402 DOI: 10.1186/s12887-019-1690-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background The study objective was to determine the carriage and serotype distribution of Streptococcus pneumoniae among children in Accra, Ghana, five years after the introduction of the pneumococcal conjugate vaccine (PCV-13) in 2012. Methods Nasopharyngeal swab samples were collected from 410 children below 5 years of age in Accra, Ghana, from September to December, 2016. Pneumococcal isolates were identified by optochin sensitivity and bile solubility. Serotyping was performed using the latex agglutination kit and Quellung reaction. The isolates were furthermore tested for antimicrobial susceptibility for different antimicrobials, including penicillin (PEN). Twelve isolates including seven non-typeable (NT) isolates were characterized using whole-genome sequencing analysis (WGS). Results The overall carriage prevalence was found to be 54% (95% CI, 49–59%), and 20% (95% CI, 49–59%) of the children were carrying PCV-13 included serotypes, while 37% (95% CI, 33–42%) of the children were carrying non-PCV-13 serotypes. Based on the serotype distribution, 33% of all observed serotypes were included in PCV-13 while 66% were non-PCV-13 serotypes. The dominating non-PCV-13 serotypes were 23B, 16F, and 11A followed by PCV-13 serotypes 23F and 19F. The PCV-13 covers the majority of resistant isolates in Accra. A proportion of 22.3% of the isolates showed intermediate resistance to penicillin G, while only one isolate showed full resistance. Forty-five isolates (20.5%) were defined as multidrug-resistant (MDR) as they were intermediate/resistant to three or more classes of antimicrobials. Of the seven NT isolates characterized by WGS, four showed highest match to genotype 38, while the remaining three showed highest match to genotype 14. Four MDR serotype 19A isolates were found to be MLST 320. Conclusion PCV-13 introduced in Ghana did not eliminate PCV-13 covered serotypes, and the carriage rate of 54% in this study is similar to carriage studies from pre PCV-13 period. However, the penicillin non-susceptible isolates have been reduced from 45% of carriage isolates before PCV-13 introduction to 22.3% of the isolates in this study. Continuous monitoring of serotype distribution is important, and in addition, an evaluation of an alternative vaccination schedule from 3 + 0 to 2 + 1 will be important to consider. Electronic supplementary material The online version of this article (10.1186/s12887-019-1690-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas T K D Dayie
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Elizabeth Y Tettey
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Mercy J Newman
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Elizabeth Bannerman
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Eric S Donkor
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Appiah-Korang Labi
- Dept. of Medical Microbiology, School of Biomedical and Allied Health Sciences University of Ghana, Accra, Ghana
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| |
Collapse
|
35
|
Gonzales-Siles L, Salvà-Serra F, Degerman A, Nordén R, Lindh M, Skovbjerg S, Moore ERB. Identification and capsular serotype sequetyping of Streptococcus pneumoniae strains. J Med Microbiol 2019; 68:1173-1188. [PMID: 31268417 DOI: 10.1099/jmm.0.001022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Correct serotype identification of Streptococcus pneumoniae (pneumococcus) is important for monitoring disease epidemiology and assessing the impacts of pneumococcal vaccines. Furthermore, correct identification and differentiation of the pathogenic S. pneumoniae from closely related commensal species of the mitis group of the genus Streptococcus are essential for correct serotype identification. METHODOLOGY A new protocol for determining the existing 98 serotypes of pneumococcus was developed, applying two PCR amplifications and amplicon sequencing, using newly designed internal primers. The new protocol was validated using S. pneumoniae genome sequences, reference strains with confirmed serotypes and clinical isolates, and comparing the results with those from the traditional Quellung reaction or antiserum panel gel precipitation, in addition to real-time PCR analysis. The taxonomic identifications of 422 publicly available (GenBank) genome sequences of S. pneumoniae, Streptococcus pseudopneumoniae and Streptococcus mitis were assessed by whole-genome sequence average nucleotide identity based on blast (ANIb) analysis. RESULTS The proposed sequetyping protocol generates a 1017 bp whole cpsB region sequence, increasing resolution for serotype identification in pneumococcus isolates. The identifications of all GenBank genome sequences of S. pneumoniae were confirmed, whereas most of the S. pseudopneumoniae and almost all of the S. mitis genome sequences did not fulfil the ANIb thresholds for species-level identification. The housekeeping biomarker gene, groEL, correctly identified S. pneumoniae but often misclassified S. pseudopneumoniae and S. mitis as S. pneumoniae. CONCLUSIONS These studies affirm the importance of applying reliable identification protocols for S. pneumoniae before serotyping; our protocols provide reliable diagnostic tools, as well as an improved workflow, for serotype identification of pneumococcus and differentiation of serogroup 6 types.
Collapse
Affiliation(s)
- Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Anna Degerman
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
36
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
37
|
Kavalari ID, Fuursted K, Krogfelt KA, Slotved HC. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 24F in Denmark. Sci Rep 2019; 9:5481. [PMID: 30940899 PMCID: PMC6445336 DOI: 10.1038/s41598-019-41983-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Since 2012, have we in Denmark observed an increase of invasive pneumococcal infections (IPD) due to Streptococcus pneumoniae serotype 24F. We here present epidemiological data on 24F IPD cases, and characterization of 48 24F clinical isolates based on clonal relationship, antimicrobial resistance (AMR) determinants and virulence factors. IPD surveillance data from (1999-2016) were used to calculate the incidence and age-distribution of serotype 24F IPD and the effect of pneumococcal conjugated vaccines (PCV). Characterization of forty-eight 24F isolates (14.7% of all 24F isolates from the period) was based on whole-genome sequencing analysis (WGS). The IPD cases of serotype 24F showed a significant increase (p < 0.05) for all age groups after the PCV-13 introduction in 2010. The majority of tested 24F isolates consisted of two MLST types, i.e. the ST72 and the ST162. Serotype 24F IPD increased in Denmark after the PCV-13 introduction in parallel with an increase of the ST162 clone. The genotypic penicillin binding protein (PBP) profile agreed with the phenotypical penicillin susceptibility. The virulence genes lytA, ply, piaA, piaB, piaC, rspB and the cpsA/wzg were detected in all 24F isolates, while the pspA and zmpC genes were absent.
Collapse
Affiliation(s)
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - H-C Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
38
|
Velsko IM, Perez MS, Richards VP. Resolving Phylogenetic Relationships for Streptococcus mitis and Streptococcus oralis through Core- and Pan-Genome Analyses. Genome Biol Evol 2019; 11:1077-1087. [PMID: 30847473 PMCID: PMC6461889 DOI: 10.1093/gbe/evz049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Taxonomic and phylogenetic relationships of Streptococcus mitis and Streptococcus oralis have been difficult to establish biochemically and genetically. We used core-genome analyses of S. mitis and S. oralis, as well as the closely related species Streptococcus pneumoniae and Streptococcus parasanguinis, to clarify the phylogenetic relationships between S. mitis and S. oralis, as well as within subclades of S. oralis. All S. mitis (n = 67), S. oralis (n = 89), S. parasanguinis (n = 27), and 27 S. pneumoniae genome assemblies were downloaded from NCBI and reannotated. All genes were delineated into homologous clusters and maximum-likelihood phylogenies built from putatively nonrecombinant core gene sets. Population structure was determined using Bayesian genome clustering, and patristic distance was calculated between populations. Population-specific gene content was assessed using a phylogenetic-based genome-wide association approach. Streptococcus mitis and S. oralis formed distinct clades, but species mixing suggests taxonomic misassignment. Patristic distance between populations suggests that S. oralis subsp. dentisani is a distinct species, whereas S. oralis subsp. tigurinus and subsp. oralis are supported as subspecies, and that S. mitis comprises two subspecies. None of the genes within the pan-genomes of S. mitis and S. oralis could be statistically correlated with either, and the dispensable genomes showed extensive variation among isolates. These are likely important factors contributing to established overlap in biochemical characteristics for these taxa. Based on core-genome analysis, the substructure of S. oralis and S. mitis should be redefined, and species assignments within S. oralis and S. mitis should be made based on whole-genome analysis to be robust to misassignment.
Collapse
Affiliation(s)
| | - Megan S Perez
- Department of Biological Sciences, Clemson University
- Department of Arts and Sciences, LeTourneau University
| | | |
Collapse
|
39
|
Identification of Streptococcus pneumoniae by a real-time PCR assay targeting SP2020. Sci Rep 2019; 9:3285. [PMID: 30824850 PMCID: PMC6397248 DOI: 10.1038/s41598-019-39791-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/21/2019] [Indexed: 11/15/2022] Open
Abstract
Real-time PCR targeting lytA (the major autolysin gene) and piaB (permease gene of the pia ABC transporter) are currently used as the gold-standard culture-independent assays for Streptococcus pneumoniae identification. We evaluated the performance of a new real-time PCR assay – targeting SP2020 (putative transcriptional regulator gene) – and compared its performance with the assays previously described. A collection of 150 pneumococci, 433 non-pneumococci and 240 polymicrobial samples (obtained from nasopharynx, oropharynx, and saliva; 80 from each site) was tested. SP2020 and lytA-CDC assays had the best performance (sensitivity of 100% for each compared to 95.3% for piaB). The specificity for lytA and piaB was 99.5% and for SP2020 was 99.8%. Misidentifications occurred for the three genes: lytA, piaB and SP2020 were found in non-pneumococcal strains; piaB was absent in some pneumococci including a serotype 6B strain. Combining lytA and SP2020 assays resulted in no misidentifications. Most polymicrobial samples (88.8%) yielded concordant results for the three molecular targets. The remaining samples seemed to contain non-typeable pneumococci (0.8%), and non-pneumococci positive for lytA (1.7%) or SP2020 (8.7%). We propose that combined detection of both lytA-CDC and SP2020 is a powerful strategy for the identification of pneumococcus either in pure cultures or in polymicrobial samples.
Collapse
|
40
|
Pimenta F, Gertz RE, Park SH, Kim E, Moura I, Milucky J, Rouphael N, Farley MM, Harrison LH, Bennett NM, Bigogo G, Feikin DR, Breiman R, Lessa FC, Whitney CG, Rajam G, Schiffer J, da Gloria Carvalho M, Beall B. Streptococcus infantis, Streptococcus mitis, and Streptococcus oralis Strains With Highly Similar cps5 Loci and Antigenic Relatedness to Serotype 5 Pneumococci. Front Microbiol 2019; 9:3199. [PMID: 30671034 PMCID: PMC6332807 DOI: 10.3389/fmicb.2018.03199] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a highly impactful bacterial pathogen on a global scale. The principal pneumococcal virulence factor and target of effective vaccines is its polysaccharide capsule, of which there are many structurally distinct forms. Here, we describe four distinct strains of three Mitis group commensal species (Streptococcus infantis, Streptococcus mitis, and Streptococcus oralis) recovered from upper respiratory tract specimens from adults in Kenya and the United States that were PCR-positive for the pneumococcal serotype 5 specific gene, wzy5. For each of the four strains, the 15 genes comprising the capsular polysaccharide biosynthetic gene cluster (cps5) shared the same order found in serotype 5 pneumococci, and each of the serotype 5-specific genes from the serotype 5 pneumococcal reference strain shared 76-99% sequence identity with the non-pneumococcal counterparts. Double-diffusion experiments demonstrated specific reactivity of the non-pneumococcal strains with pneumococcal serotype 5 typing sera. Antiserum raised against S. mitis strain KE67013 specifically reacted with serotype 5 pneumococci for a positive Quellung reaction and stimulated serotype 5 specific opsonophagocytic killing of pneumococci. Four additional commensal strains, identified using PCR serotyping assays on pharyngeal specimens, revealed loci highly homologous to those of pneumococci of serotypes 12F, 15A, 18C, and 33F. These data, in particular the species and strain diversity shown for serotype 5, highlight the existence of a broad non-pneumococcal species reservoir in the upper respiratory tract for the expression of capsular polysaccharides that are structurally related or identical to those corresponding to epidemiologically significant serotypes. Very little is known about the genetic and antigenic capsular diversity among the vast array of commensal streptococcal strains that represent multiple diverse species. The discovery of serotype 5 strains within three different commensal species suggests that extensive capsular serologic overlap exists between pneumococci and other members of the diverse Mitis group. These findings may have implications for our current understanding of naturally acquired immunity to S. pneumoniae and pneumococcal serotype distributions in different global regions. Further characterization of commensal strains carrying homologs of serotype-specific genes previously thought to be specific for pneumococci of known serotypes may shed light on the evolution of these important loci.
Collapse
Affiliation(s)
- Fabiana Pimenta
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Robert E Gertz
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - So Hee Park
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellie Kim
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Iaci Moura
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jennifer Milucky
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nadine Rouphael
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Monica M Farley
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Atlanta Veterans Affairs Medical Center, Atlanta GA, United States
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nancy M Bennett
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Godfrey Bigogo
- Kenya Medical Research Institute, Nairobi, Kenya.,International Emerging Infections Program, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Daniel R Feikin
- Kenya Medical Research Institute, Nairobi, Kenya.,International Emerging Infections Program, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Robert Breiman
- Kenya Medical Research Institute, Nairobi, Kenya.,International Emerging Infections Program, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Fernanda C Lessa
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Cynthia G Whitney
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gowrisankar Rajam
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jarad Schiffer
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Maria da Gloria Carvalho
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Bernard Beall
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
41
|
Streptococcus mitis Expressing Pneumococcal Serotype 1 Capsule. Sci Rep 2018; 8:17959. [PMID: 30568178 PMCID: PMC6299277 DOI: 10.1038/s41598-018-35921-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023] Open
Abstract
Streptococcus pneumoniae's polysaccharide capsule is an important virulence factor; vaccine-induced immunity to specific capsular polysaccharide effectively prevents disease. Serotype 1 S. pneumoniae is rarely found in healthy persons, but is highly invasive and a common cause of meningitis outbreaks and invasive disease outside of the United States. Here we show that genes for polysaccharide capsule similar to those expressed by pneumococci were commonly detected by polymerase chain reaction among upper respiratory tract samples from older US adults not carrying pneumococci. Serotype 1-specific genes were predominantly detected. In five oropharyngeal samples tested, serotype 1 gene belonging to S. mitis expressed capsules immunologically indistinct from pneumococcal capsules. Whole genome sequencing revealed three distinct S. mitis clones, each representing a cps1 operon highly similar to the pneumococcal cps1 reference operon. These findings raise important questions about the contribution of commensal streptococci to natural immunity against pneumococci, a leading cause of mortality worldwide.
Collapse
|
42
|
Genomic, Phenotypic, and Virulence Analysis of Streptococcus sanguinis Oral and Infective-Endocarditis Isolates. Infect Immun 2018; 87:IAI.00703-18. [PMID: 30396893 DOI: 10.1128/iai.00703-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus sanguinis, an abundant and benign inhabitant of the oral cavity, is an important etiologic agent of infective endocarditis (IE), particularly in people with predisposing cardiac valvular damage. Although commonly isolated from patients with IE, little is known about the factors that make any particular S. sanguinis isolate more virulent than another or, indeed, whether significant differences in virulence exist among isolates. In this study, we compared the genomes of a collection of S. sanguinis strains comprised of both oral isolates and bloodstream isolates from patients diagnosed with IE. Oral and IE isolates could not be distinguished by phylogenetic analyses, and we did not succeed in identifying virulence genes unique to the IE strains. We then investigated the virulence of these strains in a rabbit model of IE using a variation of the Bar-seq (barcode sequencing) method wherein we pooled the strains and used Illumina sequencing to count unique barcodes that had been inserted into each isolate at a conserved intergenic region. After we determined that several of the genome sequences were misidentified in GenBank, our virulence results were used to inform our bioinformatic analyses, identifying genes that may explain the heterogeneity in virulence. We further characterized these strains by assaying for phenotypes potentially contributing to virulence. Neither strain competition via bacteriocin production nor biofilm formation showed any apparent relationship with virulence. Increased cell-associated manganese was, however, correlated with blood isolates. These results, combined with additional phenotypic assays, suggest that S. sanguinis virulence is highly variable and results from multiple genetic factors.
Collapse
|
43
|
Banas JA, Drake DR. Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health 2018; 18:129. [PMID: 30064426 PMCID: PMC6069834 DOI: 10.1186/s12903-018-0595-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mutans streptococci were once the primary focus of research dedicated to understanding the etiology of dental caries. That focus has now shifted to an emphasis on the ecological balances and complexities within the entirety of the plaque microbiome. Within that framework there are considerable differences of opinion regarding the importance and relative contributions of the mutans streptococci. This article explores the basis for the various viewpoints, the limitations of current knowledge, and the confounders that make it difficult to arrive at a consensus.
Collapse
Affiliation(s)
- Jeffrey A Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, N406A DSB, Iowa City, Iowa, 52242, USA.
| | - David R Drake
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, N406A DSB, Iowa City, Iowa, 52242, USA
| |
Collapse
|
44
|
Navarro A, Martínez-Murcia A. Phylogenetic analyses of the genusAeromonasbased on housekeeping gene sequencing and its influence on systematics. J Appl Microbiol 2018; 125:622-631. [DOI: 10.1111/jam.13887] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
Affiliation(s)
- A. Navarro
- Genetic Analysis Strategies S.L.; CEEI; Elche, Alicante Spain
| | - A. Martínez-Murcia
- Genetic Analysis Strategies S.L.; CEEI; Elche, Alicante Spain
- Area de Microbiología; EPSO; Universidad Miguel Hernández; Orihuela, Alicante Spain
| |
Collapse
|
45
|
Role of Neuraminidase-Producing Bacteria in Exposing Cryptic Carbohydrate Receptors for Streptococcus gordonii Adherence. Infect Immun 2018; 86:IAI.00068-18. [PMID: 29661931 DOI: 10.1128/iai.00068-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to β-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.
Collapse
|
46
|
Park KH, Choi YJ, Kim J, Park HJ, Song D, Jang WJ. Reclassification of Borrelia spp. Isolated in South Korea Using Multilocus Sequence Typing. Jpn J Infect Dis 2018; 71:350-353. [PMID: 29848848 DOI: 10.7883/yoken.jjid.2018.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here, we used multilocus sequence typing (MLST) to evaluate 3 intergenic genes (16S rRNA, ospA, and 5S-23S IGS) in Borrelia isolated from South Korea to analyze the relationships between host, vector, and molecular background. We identified B. afzelii, B. yangtzensis, B. garinii, and B. bavariensis. This study is the first report for the identification of B. yangtzensis using MLST in South Korea.
Collapse
Affiliation(s)
- Kyung-Hee Park
- Department of Microbiology, College of Medicine, Konkuk University
| | - Yeon-Joo Choi
- Department of Microbiology, College of Medicine, Konkuk University.,Institute of Glocal Disease Control, College of Medicine, Konkuk University
| | - Jeoungyeon Kim
- Department of Microbiology, College of Medicine, Konkuk University.,Institute of Glocal Disease Control, College of Medicine, Konkuk University
| | - Hye-Jin Park
- Department of Microbiology, College of Medicine, Konkuk University.,Institute of Glocal Disease Control, College of Medicine, Konkuk University
| | - Dayoung Song
- Department of Microbiology, College of Medicine, Konkuk University.,Institute of Glocal Disease Control, College of Medicine, Konkuk University
| | - Won-Jong Jang
- Department of Microbiology, College of Medicine, Konkuk University.,Institute of Glocal Disease Control, College of Medicine, Konkuk University
| |
Collapse
|
47
|
Wyllie AL, Pannekoek Y, Bovenkerk S, van Engelsdorp Gastelaars J, Ferwerda B, van de Beek D, Sanders EAM, Trzciński K, van der Ende A. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species. Open Biol 2018; 7:rsob.170074. [PMID: 28931649 PMCID: PMC5627049 DOI: 10.1098/rsob.170074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates.
Collapse
Affiliation(s)
- Anne L Wyllie
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jody van Engelsdorp Gastelaars
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart Ferwerda
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Margos G, Notter I, Fingerle V. Species Identification and Phylogenetic Analysis of Borrelia burgdorferi Sensu Lato Using Molecular Biological Methods. Methods Mol Biol 2018; 1690:13-33. [PMID: 29032533 DOI: 10.1007/978-1-4939-7383-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial species identification is required in different disciplines and-depending on the purpose-levels of specificity or resolution of typing may vary. Nowadays, molecular methods are the mainstay for bacterial identification and sequence-based analyses are of ever-growing importance. For diagnostics, immediate results are needed and often real-time PCR of one or two loci is the method of choice while for epidemiological or evolutionary studies sequence data of several loci improve phylogenetic resolution to required levels. Multilocus sequence typing (MLST) and multilocus sequence analyses (MLSA) utilize sequences information of several housekeeping loci (eight for Borrelia) to distinguish between species. This method has been widely used for bacterial species and strain identification and will be described in this chapter.As more and more diversity is being detected in the Borrelia burgdorferi sensu lato species complex, the importance of accurate species and strain typing has come to the fore. This is particularly significant with a view of differentiating human pathogenic and non-pathogenic strains or species and understanding the epidemiology, ecology, population structure, and evolution of species.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, National Reference Center for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany.
| | - Isabell Notter
- Bavarian Health and Food Safety Authority, National Reference Center for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, National Reference Center for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
49
|
Ikryannikova LN, Malakhova MV, Lominadze GG, Karpova IY, Kostryukova ES, Mayansky NA, Kruglov AN, Klimova EA, Lisitsina ES, Ilina EN, Govorun VM. Inhibitory effect of streptococci on the growth of M. catarrhalis strains and the diversity of putative bacteriocin-like gene loci in the genomes of S. pneumoniae and its relatives. AMB Express 2017; 7:218. [PMID: 29236192 PMCID: PMC5729180 DOI: 10.1186/s13568-017-0521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
S. pneumoniae is a facultative human pathogen causing a wide range of infections including the life-threatening pneumoniae or meningitis. It colonizes nasopharynx as well as its closest phylogenetic relatives S. pseudopneumoniae and S. mitis. Both the latter, despite the considerable morphological and phenotypic similarity with the pneumococcus, are considerably less pathogenic for humans and cause infections mainly in the immunocompromized hosts. In this work, we compared the inhibitory effect of S. pneumoniae and its relatives on the growth of Moraxella catarrhalis strains using the culture-based antagonistic test. We observed that the inhibitory effect of S. mitis strains is kept when a hydrogen peroxide produced by cells is inactivated by catalase, and even when the live cells are killed in chloroform vapors, in contrast to the pneumococcus whose inhibiting ability disappeared when the cells die. It was suggested that this effect may be due to the production of bacterial antimicrobial peptides by S. mitis, so we examined the genomes of our strains for the presence of bacteriocin-like peptides encoding genes. We observed that a set of bacteriocin-like genes in the genome of S. mitis is greatly poorer in comparison with S. pneumoniae one; moreover, in one S. mitis strain we found no bacteriocin-like genes. It could mean that there are probably some additional opportunities of S. mitis to inhibit the growth of competing neighbors which are still have to be discovered.
Collapse
|
50
|
Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods 2017; 141:48-54. [DOI: 10.1016/j.mimet.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022]
|