1
|
Xie P, Zhang H, Qin Y, Xiong H, Shi C, Zhou Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023; 13:1772. [PMID: 38136643 PMCID: PMC10741411 DOI: 10.3390/biom13121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of various diseases often involves an intricate interplay between membrane proteins and membrane curvature. Understanding the underlying mechanisms of this interaction could offer novel perspectives on disease treatment. In this review, we provide an introduction to membrane curvature and its association with membrane proteins. Furthermore, we delve into the impact and potential implications of this interaction in the context of disease treatment. Lastly, we discuss the prospects and challenges associated with harnessing these interactions for effective disease management, aiming to provide fresh insights into therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China; (P.X.); (H.Z.); (Y.Q.); (H.X.); (C.S.)
| |
Collapse
|
2
|
Chiu SC, Yang XT, Wei TYW, Liao YTA, Chen JMM, Kuo YC, Liu CCJ, Cheng CY, Huang YTJ, Huang YRJ, Wu HLJ, Wan CX, Tsai JR, Yu CTR. The crescent-like Golgi ribbon is shaped by the Ajuba/PRMT5/Aurora-A complex-modified HURP. Cell Commun Signal 2023; 21:156. [PMID: 37370099 DOI: 10.1186/s12964-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Xin-Ting Yang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yu-Ting Amber Liao
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Chun-Chih Jared Liu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chiao-Yun Cheng
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | | | - He-Lian Joe Wu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan.
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.
- Present Address: Department of Applied Chemistry, National Chi Nan University, No. 1, University Rd. Puli, Nantou, 545, Taiwan.
| |
Collapse
|
3
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Upadhyai P, Radhakrishnan P, Guleria VS, Kausthubham N, Nayak SS, Superti-Furga A, Girisha KM. Biallelic deep intronic variant c.5457+81T>A in TRIP11 causes loss of function and results in achondrogenesis 1A. Hum Mutat 2021; 42:1005-1014. [PMID: 34057271 DOI: 10.1002/humu.24235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Biallelic loss of function variants in TRIP11 encoding for the Golgi microtubule-associated protein 210 (GMAP-210) causes the lethal chondrodysplasia achondrogenesis type 1A (ACG1A). Loss of TRIP11 activity has been shown to impair Golgi structure, vesicular transport, and results in loss of IFT20 anchorage to the Golgi that is vital for ciliary trafficking and ciliogenesis. Here, we report four fetuses, two each from two families, who were ascertained antenatally with ACG1A. Affected fetuses in both families are homozygous for the deep intronic TRIP11 variant, c.5457+81T>A, which was found in a shared region of homozygosity. This variant was found to cause aberrant transcript splicing and the retention of 77 base pairs of intron 18. The TRIP11 messenger RNA and protein levels were drastically reduced in fibroblast cells derived from one of the affected fetuses. Using immunofluorescence we also detected highly compacted Golgi apparatus in affected fibroblasts. Further, we observed a significant reduction in the frequency of ciliated cells and in the length of primary cilia in subject-derived cell lines, not reported so far in patient cells with TRIP11 null or hypomorphic variants. Our findings illustrate how pathogenic variants in intronic regions of TRIP11 can impact transcript splicing, expression, and activity, resulting in ACG1A.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vishal S Guleria
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Zhang X. Alterations of Golgi Structural Proteins and Glycosylation Defects in Cancer. Front Cell Dev Biol 2021; 9:665289. [PMID: 34055798 PMCID: PMC8149618 DOI: 10.3389/fcell.2021.665289] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
As the central hub in the secretory and endocytic pathways, the Golgi apparatus continually receives the flow of cargos and serves as a major processing station in the cell. Due to its dynamic nature, a sophisticated and constantly remodeling mechanism needs to be set up to maintain the Golgi architecture and function in the non-stop trafficking of proteins and lipids. Abundant evidence has been accumulated that a well-organized Golgi structure is required for its proper functions, especially protein glycosylation. Remarkably, altered glycosylation has been a hallmark of most cancer cells. To understand the causes of Golgi defects in cancer, efforts have been made to characterize Golgi structural proteins under physiological and pathological conditions. This review summarizes the current knowledge of crucial Golgi structural proteins and their connections with tumor progression. We foresee that understanding the Golgi structural and functional defects may help solve the puzzle of whether glycosylation defect is a cause or effect of oncogenesis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Appl Environ Microbiol 2021; 87:AEM.02522-20. [PMID: 33452023 DOI: 10.1128/aem.02522-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of ScRUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δrud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Δrud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearum IMPORTANCE Fusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.
Collapse
|
7
|
Wang Z, Shi Y, Ma S, Huang Q, Yap YT, Shi L, Zhang S, Zhou T, Li W, Hu B, Zhang L, Krawetz SA, Pazour GJ, Hess RA, Zhang Z. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice. Am J Physiol Cell Physiol 2020; 318:C174-C190. [PMID: 31577511 PMCID: PMC6985835 DOI: 10.1152/ajpcell.00517.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
Abstract
GMAP210 (TRIP11) is a cis-Golgi network-associated protein and a Golgi membrane receptor for IFT20, an intraflagellar transport component essential for male fertility and spermiogenesis in mice. To investigate the role of GMAP210 in male fertility and spermatogenesis, floxed Gmap210 mice were bred with Stra8-iCre mice so that the Gmap210 gene is disrupted in spermatocytes and spermatids in this study. The Gmap210flox/flox: Stra8-iCre mutant mice showed no gross abnormalities and survived to adulthood. In adult males, testis and body weights showed no difference between controls and mutant mice. Low-magnification histological examination of the testes revealed normal seminiferous tubule structure, but sperm counts and fertility were significantly reduced in mutant mice compared with controls. Higher resolution examination of the mutant seminiferous epithelium showed that nearly all sperm had more oblong, abnormally shaped heads, while the sperm tails appeared to have normal morphology. Electron microscopy also revealed abnormally shaped sperm heads but normal axoneme core structure; some sperm showed membrane defects in the midpiece. In mutant mice, expression levels of IFT20 and other selective acrosomal proteins were significantly reduced, and their localization was also affected. Peanut-lectin, an acrosome maker, was almost absent in the spermatids and epididymal sperm. Mitochondrion staining was highly concentrated in the heads of sperm, suggesting that the midpieces were coiling around or aggregating near the heads. Defects in acrosome biogenesis were further confirmed by electron microscopy. Collectively, our findings suggest that GMAP210 is essential for acrosome biogenesis, normal mitochondrial sheath formation, and male fertility, and it determines expression levels and acrosomal localization of IFT20 and other acrosomal proteins.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yuqin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Suheng Ma
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qian Huang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shiyang Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Ting Zhou
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Bo Hu
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Ling Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Stephen A Krawetz
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| |
Collapse
|
8
|
Fakhree MAA, Blum C, Claessens MMAE. Shaping membranes with disordered proteins. Arch Biochem Biophys 2019; 677:108163. [PMID: 31672499 DOI: 10.1016/j.abb.2019.108163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.
Collapse
Affiliation(s)
| | - Christian Blum
- Nanobiophysics Group, University of Twente, 7522, NB, Enschede, the Netherlands
| | | |
Collapse
|
9
|
Bornens M. A moment at the cell centre. Biol Cell 2019; 111:294-307. [PMID: 31621092 DOI: 10.1111/boc.201900068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
I have been invited by the board of the French Society of Cell Biology (SBCF) to write a text around my presentation in the Symposium 'A day at the Cell Centre', held at the Curie Institute on May 17, 2019, and organized by four of my former students, namely Juliette Azimzadeh, Nathalie Delgehyr, Matthieu Piel and Manuel Théry. I have to thank them warmly for the quality of the science during this day. It was also a moving day for me indeed to listen to so many figures in the field.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS, Paris, France
| |
Collapse
|
10
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
11
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
12
|
Bhatt JM, Hancock W, Meissner JM, Kaczmarczyk A, Lee E, Viktorova E, Ramanadham S, Belov GA, Sztul E. Promiscuity of the catalytic Sec7 domain within the guanine nucleotide exchange factor GBF1 in ARF activation, Golgi homeostasis, and effector recruitment. Mol Biol Cell 2019; 30:1523-1535. [PMID: 30943106 PMCID: PMC6724685 DOI: 10.1091/mbc.e18-11-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A-inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF's targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William Hancock
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aneta Kaczmarczyk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ekaterina Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
13
|
Wehrle A, Witkos TM, Unger S, Schneider J, Follit JA, Hermann J, Welting T, Fano V, Hietala M, Vatanavicharn N, Schoner K, Spranger J, Schmidts M, Zabel B, Pazour GJ, Bloch-Zupan A, Nishimura G, Superti-Furga A, Lowe M, Lausch E. Hypomorphic mutations of TRIP11 cause odontochondrodysplasia. JCI Insight 2019; 4:e124701. [PMID: 30728324 PMCID: PMC6413787 DOI: 10.1172/jci.insight.124701] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Odontochondrodysplasia (ODCD) is an unresolved genetic disorder of skeletal and dental development. Here, we show that ODCD is caused by hypomorphic TRIP11 mutations, and we identify ODCD as the nonlethal counterpart to achondrogenesis 1A (ACG1A), the known null phenotype in humans. TRIP11 encodes Golgi-associated microtubule-binding protein 210 (GMAP-210), an essential tether protein of the Golgi apparatus that physically interacts with intraflagellar transport 20 (IFT20), a component of the ciliary intraflagellar transport complex B. This association and extraskeletal disease manifestations in ODCD point to a cilium-dependent pathogenesis. However, our functional studies in patient-derived primary cells clearly support a Golgi-based disease mechanism. In spite of reduced abundance, residual GMAP variants maintain partial Golgi integrity, normal global protein secretion, and subcellular distribution of IFT20 in ODCD. These functions are lost when GMAP-210 is completely abrogated in ACG1A. However, a similar defect in chondrocyte maturation is observed in both disorders, which produces a cellular achondrogenesis phenotype of different severity, ensuing from aberrant glycan processing and impaired extracellular matrix proteoglycan secretion by the Golgi apparatus.
Collapse
Affiliation(s)
- Anika Wehrle
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomasz M Witkos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sheila Unger
- Division of Genetic Medicine, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Judith Schneider
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John A Follit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Johannes Hermann
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim Welting
- Laboratory for Experimental Orthopedics, Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Virginia Fano
- Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Marja Hietala
- Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | | | - Katharina Schoner
- Institute of Pathology, Philipps-University Marburg, Marburg, Germany
| | - Jürgen Spranger
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Zabel
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Agnes Bloch-Zupan
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Institute of Advanced Studies, USIAS, Strasbourg, France
- HUS, Pôle de Médecine et Chirurgie Bucco-dentaires Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U1258, CNRS- UMR7104, Illkirch, France
| | - Gen Nishimura
- Department of Radiology and Medical Imaging, Tokyo Metropolitan Kiyose Children's Hospital, Kiyose, Japan
| | - Andrea Superti-Furga
- Division of Genetic Medicine, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Jackson CL, Walch L, Verbavatz JM. Lipids and Their Trafficking: An Integral Part of Cellular Organization. Dev Cell 2017; 39:139-153. [PMID: 27780039 DOI: 10.1016/j.devcel.2016.09.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionarily conserved feature of cellular organelles is the distinct phospholipid composition of their bounding membranes, which is essential to their identity and function. Within eukaryotic cells, two major lipid territories can be discerned, one centered on the endoplasmic reticulum and characterized by membranes with lipid packing defects, the other comprising plasma-membrane-derived organelles and characterized by membrane charge. We discuss how this cellular lipid organization is maintained, how lipid flux is regulated, and how perturbations in cellular lipid homeostasis can lead to disease.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Laurence Walch
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
15
|
Magdeleine M, Gautier R, Gounon P, Barelli H, Vanni S, Antonny B. A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. eLife 2016; 5. [PMID: 27458799 PMCID: PMC4961469 DOI: 10.7554/elife.16988] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022] Open
Abstract
When small phosphatidylcholine liposomes are added to perforated cells, they bind preferentially to the Golgi suggesting an exceptional avidity of this organelle for curved membranes without stereospecific interactions. We show that the cis golgin GMAP-210 accounts for this property. First, the liposome tethering properties of the Golgi resembles that of the amphipathic lipid-packing sensor (ALPS) motif of GMAP-210: both preferred small (radius < 40 nm) liposomes made of monounsaturated but not saturated lipids. Second, reducing GMAP-210 levels or redirecting its ALPS motif to mitochondria decreased liposome capture by the Golgi. Extensive mutagenesis analysis suggests that GMAP-210 tethers authentic transport vesicles via the same mechanism whereby the ALPS motif senses lipid-packing defects at the vesicle surface through its regularly spaced hydrophobic residues. We conclude that the Golgi uses GMAP-210 as a filter to select transport vesicles according to their size and bulk lipid composition. DOI:http://dx.doi.org/10.7554/eLife.16988.001
Collapse
Affiliation(s)
- Maud Magdeleine
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Romain Gautier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Pierre Gounon
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Stefano Vanni
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
16
|
Doucet CM, Esmery N, de Saint-Jean M, Antonny B. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone. PLoS One 2015; 10:e0137965. [PMID: 26366573 PMCID: PMC4569407 DOI: 10.1371/journal.pone.0137965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.
Collapse
Affiliation(s)
- Christine M. Doucet
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
- * E-mail:
| | - Nina Esmery
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| | | | - Bruno Antonny
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| |
Collapse
|
17
|
Abstract
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.
Collapse
Affiliation(s)
- Rosa M Rios
- Cell Signalling Department, CABIMER-CSIC, Seville 41092, Spain
| |
Collapse
|
18
|
Roboti P, Sato K, Lowe M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway. J Cell Sci 2015; 128:1595-606. [PMID: 25717001 PMCID: PMC4406126 DOI: 10.1242/jcs.166710] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2).
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Keisuke Sato
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Sato K, Roboti P, Mironov AA, Lowe M. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 2014; 26:537-53. [PMID: 25473115 PMCID: PMC4310744 DOI: 10.1091/mbc.e14-10-1450] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vesicle tethering mediated by the golgin GMAP-210 is required to maintain the structure of the Golgi apparatus. Tethering by GMAP-210 is mediated solely by the ALPS motif, and binding to Rab2 and the length of GMAP-210, although not required for tethering per se, are also critical for its functional role at the Golgi apparatus. Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.
Collapse
Affiliation(s)
- Keisuke Sato
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peristera Roboti
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alexander A Mironov
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
20
|
Horchani H, de Saint-Jean M, Barelli H, Antonny B. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment. PLoS One 2014; 9:e113484. [PMID: 25426975 PMCID: PMC4245137 DOI: 10.1371/journal.pone.0113484] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/28/2014] [Indexed: 11/27/2022] Open
Abstract
The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.
Collapse
Affiliation(s)
- Habib Horchani
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
| | - Maud de Saint-Jean
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
- * E-mail: (HB); (BA)
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
- * E-mail: (HB); (BA)
| |
Collapse
|
21
|
Abstract
The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.
Collapse
Affiliation(s)
- Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Samuel Bouvet
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| |
Collapse
|
22
|
Asante D, Maccarthy-Morrogh L, Townley AK, Weiss MA, Katayama K, Palmer KJ, Suzuki H, Westlake CJ, Stephens DJ. A role for the Golgi matrix protein giantin in ciliogenesis through control of the localization of dynein-2. J Cell Sci 2013; 126:5189-97. [PMID: 24046448 DOI: 10.1242/jcs.131664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization.
Collapse
Affiliation(s)
- David Asante
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang D, Wang Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 2013; 23:296-304. [PMID: 23453991 DOI: 10.1016/j.tcb.2013.01.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 01/12/2023]
Abstract
The Golgi apparatus is a membranous organelle in the cell that plays essential roles in protein and lipid trafficking, sorting, processing, and modification. Its basic structure is a stack of closely aligned flattened cisternae. In mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Biogenesis of the Golgi during cell division occurs through a sophisticated disassembly and reassembly process that can be divided into three distinct but cooperative steps, including the deformation and reformation of the Golgi cisternae, stacks, and ribbon. Here, we review our current understanding of the protein machineries that control these three steps in the cycle of mammalian cell division: GRASP65 and GRASP55 in Golgi stack and ribbon formation; ubiquitin and AAA ATPases in postmitotic Golgi membrane fusion; and golgins and cytoskeleton in Golgi ribbon formation.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
24
|
Broekhuis JR, Rademakers S, Burghoorn J, Jansen G. SQL-1, homologue of the Golgi protein GMAP210, modulates intraflagellar transport in C. elegans. J Cell Sci 2013; 126:1785-95. [PMID: 23444385 DOI: 10.1242/jcs.116640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia are microtubule-based organelles that have important sensory functions. For their function, cilia rely on the delivery of specific proteins, both by intracellular trafficking and intraflagellar transport (IFT). In the cilia of Caenorhabditis elegans, anterograde IFT is mediated by kinesin-II and OSM-3. Previously, we have shown that expression of a dominant active G protein α subunit (GPA-3QL) in amphid channel neurons affects the coordination of kinesin-II and OSM-3 and also affects cilia length, suggesting that environmental signals can modulate these processes. Here, we show that loss-of-function of sql-1 (suppressor of gpa-3QL 1), which encodes the homologue of the mammalian Golgi protein GMAP210, suppresses the gpa-3QL cilia length phenotype. SQL-1 localizes to the Golgi apparatus, where it contributes to maintaining Golgi organization. Loss of sql-1 by itself does not affect cilia length, whereas overexpression of sql-1 results in longer cilia. Using live imaging of fluorescently tagged IFT proteins, we show that in sql-1 mutants OSM-3 moves faster, kinesin-II moves slower and that some complex A and B proteins move at an intermediate velocity, while others move at the same velocity as OSM-3. This indicates that mutation of sql-1 destabilizes the IFT complex. Finally, we show that simultaneous inactivation of sql-1 and activation of gpa-3QL affects the velocity of OSM-3. In summary, we show that in C. elegans the Golgin protein SQL-1 plays an important role in maintaining the stability of the IFT complex.
Collapse
Affiliation(s)
- Joost R Broekhuis
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2013; 23:886-95. [PMID: 23153485 DOI: 10.1016/j.devcel.2012.10.009] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | |
Collapse
|
26
|
Tripathi R, Boschetti C, McGee B, Tunnacliffe A. Trafficking of bdelloid rotifer late embryogenesis abundant proteins. ACTA ACUST UNITED AC 2012; 215:2786-94. [PMID: 22837450 DOI: 10.1242/jeb.071647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bdelloid rotifer Adineta ricciae is an asexual microinvertebrate that can survive desiccation by entering an ametabolic state known as anhydrobiosis. Two late embryogenesis abundant (LEA) proteins, ArLEA1A and ArLEA1B, have been hypothesized to contribute to desiccation tolerance in these organisms, since in vitro assays suggest that ArLEA1A and ArLEA1B stabilize desiccation-sensitive proteins and membranes, respectively. To examine their functions in vivo, it is important to analyse the cellular distribution of the bdelloid LEA proteins. Bioinformatics predicted their translocation into the endoplasmic reticulum (ER) via an N-terminal ER translocation signal and persistence in the same compartment via a variant C-terminal retention signal sequence ATEL. We assessed the localization of LEA proteins in bdelloids and in a mammalian cell model. The function of the N-terminal sequence of ArLEA1A and ArLEA1B in mediating ER translocation was verified, but our data showed that, unlike classical ER-retention signals, ATEL allows progression from the ER to the Golgi and limited secretion of the proteins into the extracellular medium. These results suggest that the N-terminal ER translocation signal and C-terminal ATEL sequence act together to regulate the distribution of rotifer LEA proteins within intracellular vesicular compartments, as well as the extracellular space. We speculate that this mechanism allows a small number of LEA proteins to offer protection to a large number of desiccation-sensitive molecules and structures both inside and outside cells in the bdelloid rotifer.
Collapse
Affiliation(s)
- Rashmi Tripathi
- Cell and Organism Engineering Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | | | | | | |
Collapse
|
27
|
The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells. Biochem J 2012; 443:387-96. [PMID: 22250954 DOI: 10.1042/bj20110554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.
Collapse
|
28
|
Diaz-Corrales FJ, Miyazaki I, Asanuma M, Ruano D, Rios RM. Centrosomal aggregates and Golgi fragmentation disrupt vesicular trafficking of DAT. Neurobiol Aging 2011; 33:2462-77. [PMID: 22177721 DOI: 10.1016/j.neurobiolaging.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022]
Abstract
Lewy bodies containing the centrosomal protein γ-tubulin and fragmentation of Golgi apparatus (GA) have been described in nigral neurons of Parkinson's disease (PD) patients. However, the relevance of these features in PD pathophysiology remains unknown. We analyzed the impact of proteasome inhibition in the formation of γ-tubulin-containing aggregates as well as on GA structure. SH-SY5Y cells were treated with the proteasome inhibitor Z-Leu-Leu-Leu-al (MG132) to induce centrosomal-protein aggregates. Then, microtubules (MTs) and Golgi dynamics, as well as the vesicular transport of dopamine transporter (DAT) were evaluated both in vitro and in living cells. MG132 treatment induced γ-tubulin aggregates which altered microtubule nucleation. MG132-treated cells containing γ-tubulin aggregates showed fragmentation of GA and perturbation of the trans-Golgi network. Under these conditions, the DAT accumulated at the centrosomal-Golgi region indicating that the vesicular transport of DAT was disrupted. Thus, centrosomal aggregates and fragmentation of GA are 2 closely related processes that could result in the disruption of the vesicular transport of DAT toward the plasma membrane in a model of dopaminergic neuronal degeneration.
Collapse
Affiliation(s)
- Francisco J Diaz-Corrales
- Departamento de Señalización Celular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Seville, Spain.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Bacteria and eukaryotic cells contain geometry-sensing tools in their cytosol: protein motifs or domains that recognize the curvature, concave or convex, deep or shallow, of lipid membranes. These sensors contrast with classical lipid-binding domains by their extended structure and, sometimes, counterintuitive chemistry. Among the sensors are long amphipathic helices, such as the ALPS motif and the N-terminal region of α-synuclein, whose apparent "design defects" translate into a remarkable ability to specifically adsorb to the surface of small vesicles. Fundamental differences in the lipid composition of membranes of the early and late secretory pathways probably explain why some sensors use mostly electrostatics whereas others take advantage of the hydrophobic effect. Membrane curvature sensors help to organize very diverse reactions, such as lipid transfer between membranes, the tethering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats.
Collapse
Affiliation(s)
- Bruno Antonny
- Université de Nice-Sophia Antipolis and Centre National de la Recheche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
30
|
Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, Jackson CL. α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. ACTA ACUST UNITED AC 2011; 194:89-103. [PMID: 21746853 PMCID: PMC3135411 DOI: 10.1083/jcb.201011118] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two membrane curvature–sensing molecules with opposite chemistries are targeted to distinct vesicle classes through direct interaction with different lipid environments. Membrane curvature sensors have diverse structures and chemistries, suggesting that they might have the intrinsic capacity to discriminate between different types of vesicles in cells. In this paper, we compare the in vitro and in vivo membrane-binding properties of two curvature sensors that form very different amphipathic helices: the amphipathic lipid-packing sensor (ALPS) motif of a Golgi vesicle tether and the synaptic vesicle protein α-synuclein, a causative agent of Parkinson’s disease. We demonstrate the mechanism by which α-synuclein senses membrane curvature. Unlike ALPS motifs, α-synuclein has a poorly developed hydrophobic face, and this feature explains its dual sensitivity to negatively charged lipids and to membrane curvature. When expressed in yeast cells, these two curvature sensors were targeted to different classes of vesicles, those of the early secretory pathway for ALPS motifs and to negatively charged endocytic/post-Golgi vesicles in the case of α-synuclein. Through structures with complementary chemistries, α-synuclein and ALPS motifs target distinct vesicles in cells by direct interaction with different lipid environments.
Collapse
Affiliation(s)
- Iwona M Pranke
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Freeze HH, Ng BG. Golgi glycosylation and human inherited diseases. Cold Spring Harb Perspect Biol 2011; 3:a005371. [PMID: 21709180 DOI: 10.1101/cshperspect.a005371] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
32
|
Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM. Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. ACTA ACUST UNITED AC 2011; 193:917-33. [PMID: 21606206 PMCID: PMC3105543 DOI: 10.1083/jcb.201011014] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AKAP450 is a critical determinant of Golgi ribbon integrity, positioning, and function. Mammalian cells exhibit a frequent pericentrosomal Golgi ribbon organization. In this paper, we show that two AKAP450 N-terminal fragments, both containing the Golgi-binding GM130-interacting domain of AKAP450, dissociated endogenous AKAP450 from the Golgi and inhibited microtubule (MT) nucleation at the Golgi without interfering with centrosomal activity. These two fragments had, however, strikingly different effects on both Golgi apparatus (GA) integrity and positioning, whereas the short fragment induced GA circularization and ribbon fragmentation, the large construct that encompasses an additional p150glued/MT-binding domain induced separation of the Golgi ribbon from the centrosome. These distinct phenotypes arose by specific interference of each fragment with either Golgi-dependent or centrosome-dependent stages of Golgi assembly. We could thus demonstrate that breaking the polarity axis by perturbing GA positioning has a more dramatic effect on directional cell migration than disrupting the Golgi ribbon. Both features, however, were required for ciliogenesis. We thus identified AKAP450 as a key determinant of pericentrosomal Golgi ribbon integrity, positioning, and function in mammalian cells.
Collapse
Affiliation(s)
- Lidia Hurtado
- Departamento de Señalización Celular, Centro Andaluz de Biología Molecular y Medicina Regenerativa-Consejo Superior de Investigaciones Científicas, 41092-Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Golgi positioning. These motors move along microtubules toward microtubule minus-ends embedded in centrosomes. Centripetal motility is controlled by a host of regulators whose precise functions remain to be determined. Significantly, a specific Golgi receptor for dynein has not been identified. This has impaired progress toward elucidation of membrane-motor-microtubule attachment in the periphery and, after inward movement, recycling of the motor for another round. Pericentrosomal positioning of the Golgi apparatus is dynamic. It is regulated during critical cellular processes such as mitosis, differentiation, cell polarization, and cell migration. Positioning is also important as it aligns the Golgi along an axis of cell polarity. In certain cell types, this promotes secretion directed to the proximal plasma membrane domain thereby maintaining specializations critical for diverse processes including wound healing, immunological synapse formation, and axon determination.
Collapse
Affiliation(s)
- Smita Yadav
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
34
|
Abstract
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.
Collapse
|
35
|
Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail. Dev Dyn 2011; 240:723-36. [PMID: 21337470 DOI: 10.1002/dvdy.22563] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2011] [Indexed: 11/07/2022] Open
Abstract
We describe the localization of the golgin GMAP210 and the intraflagellar protein IFT88 in the Golgi of spermatids and the participation of these two proteins in the development of the acrosome-acroplaxome complex, the head-tail coupling apparatus (HTCA) and the spermatid tail. Immunocytochemical experiments show that GMAP210 predominates in the cis-Golgi, whereas IFT88 prevails in the trans-Golgi network. Both proteins colocalize in proacrosomal vesicles, along acrosome membranes, the HTCA and the developing tail. IFT88 persists in the acrosome-acroplaxome region of the sperm head, whereas GMAP210 is no longer seen there. Spermatids of the Ift88 mouse mutant display abnormal head shaping and are tail-less. GMAP210 is visualized in the Ift88 mutant during acrosome-acroplaxome biogenesis. However, GMAP210-stained vesicles, mitochondria and outer dense fiber material build up in the manchette region and fail to reach the abortive tail stump in the mutant. In vitro disruption of the spermatid Golgi and microtubules with Brefeldin-A and nocodazole blocks the progression of GMAP210- and IFT88-stained proacrosomal vesicles to the acrosome-acroplaxome complex but F-actin distribution in the acroplaxome is not affected. We provide the first evidence that IFT88 is present in the Golgi of spermatids, that the microtubule-associated golgin GMAP210 and IFT88 participate in acrosome, HTCA, and tail biogenesis, and that defective intramanchette transport of cargos disrupts spermatid tail development.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomy, The Sophie Davis School of Biomedical Education, The City University of New York, New York, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In vitro assays identified the Golgi peripheral protein GRASP65 as a Golgi stacking factor that links adjacent Golgi cisternae by forming mitotically regulated trans-oligomers. These conclusions, however, require further confirmation in the cell. In this study, we showed that the first 112 amino acids at the N-terminus (including the first PDZ domain, PDZ1) of the protein are sufficient for oligomerization. Systematic electron microscopic analysis showed that the expression of non-regulatable GRASP65 mutants in HeLa cells enhanced Golgi stacking in interphase and inhibited Golgi fragmentation during mitosis. Depletion of GRASP65 by small interference RNA (siRNA) reduced the number of cisternae in the Golgi stacks; this reduction was rescued by expressing exogenous GRASP65. These results provided evidence and a molecular mechanism by which GRASP65 stacks Golgi cisternal membranes. Further experiments revealed that inhibition of mitotic Golgi disassembly by expressing non-regulatable GRASP65 mutants did not affect equal partitioning of the Golgi membranes into the daughter cells. However, it delayed mitotic entry and suppressed cell growth; this effect was diminished by dispersing the Golgi apparatus with Brefeldin A treatment prior to mitosis, suggesting that Golgi disassembly at the onset of mitosis plays a role in cell cycle progression.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
37
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|