1
|
Xue L, Sun J, Sun Y, Wang Y, Zhang K, Fan M, Qian H, Li Y, Wang L. Maternal Brown Rice Diet during Pregnancy Promotes Adipose Tissue Browning in Offspring via Reprogramming PKA Signaling and DNA Methylation. Mol Nutr Food Res 2024:e2300861. [PMID: 38566521 DOI: 10.1002/mnfr.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
SCOPE Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Wu YH, Huang YF, Wu PY, Chang TH, Huang SC, Chou CY. The downregulation of miR-509-3p expression by collagen type XI alpha 1-regulated hypermethylation facilitates cancer progression and chemoresistance via the DNA methyltransferase 1/Small ubiquitin-like modifier-3 axis in ovarian cancer cells. J Ovarian Res 2023; 16:124. [PMID: 37386587 DOI: 10.1186/s13048-023-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. METHODS The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. RESULTS Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. CONCLUSION The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, 73658, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 110, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan.
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan.
| |
Collapse
|
3
|
Kim DJ, Anandh S, Null JL, Przanowski P, Bhatnagar S, Kumar P, Shelton SE, Grundy EE, Chiappinelli KB, Kamm RD, Barbie DA, Dudley AC. Priming a vascular-selective cytokine response permits CD8 + T-cell entry into tumors. Nat Commun 2023; 14:2122. [PMID: 37055433 PMCID: PMC10101959 DOI: 10.1038/s41467-023-37807-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Targeting DNA methyltransferase 1 (DNMT1) has immunomodulatory and anti-neoplastic activity, especially when paired with cancer immunotherapies. Here we explore the immunoregulatory functions of DNMT1 in the tumor vasculature of female mice. Dnmt1 deletion in endothelial cells (ECs) impairs tumor growth while priming expression of cytokine-driven cell adhesion molecules and chemokines important for CD8+ T-cell trafficking across the vasculature; consequently, the efficacy of immune checkpoint blockade (ICB) is enhanced. We find that the proangiogenic factor FGF2 promotes ERK-mediated DNMT1 phosphorylation and nuclear translocation to repress transcription of the chemokines Cxcl9/Cxcl10 in ECs. Targeting Dnmt1 in ECs reduces proliferation but augments Th1 chemokine production and extravasation of CD8+ T-cells, suggesting DNMT1 programs immunologically anergic tumor vasculature. Our study is in good accord with preclinical observations that pharmacologically disrupting DNMT1 enhances the activity of ICB but suggests an epigenetic pathway presumed to be targeted in cancer cells is also operative in the tumor vasculature.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Jamie L Null
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Sanchita Bhatnagar
- Medical Microbiology and Immunology, The University of California Davis, School of Medicine, Davis, CA, 95616, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- UVA Comprehensive Cancer Center, The University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Wu YH, Huang YF, Wu PY, Chang TH, Huang SC, Chou CY. The Downregulation of miR-509-3p Expression by Collagen Type XI Alpha 1-Regulated Hypermethylation Facilitates Cancer Progression and Chemoresistance via the DNA Methyltransferase 1/Small Ubiquitin-like Modifier-3 Axis in Ovarian Cancer Cells. RESEARCH SQUARE 2023:rs.3.rs-2592453. [PMID: 36865240 PMCID: PMC9980191 DOI: 10.21203/rs.3.rs-2592453/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. Methods The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. Results Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) phosphorylation and stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. Conclusion The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Collapse
Affiliation(s)
| | - Yu-Fang Huang
- National Cheng Kung University Hospital, National Cheng Kung University
| | - Pei-Ying Wu
- National Cheng Kung University Hospital, National Cheng Kung University
| | | | | | - Cheng-Yang Chou
- National Cheng Kung University Hospital, National Cheng Kung University
| |
Collapse
|
5
|
Liu H, Liu Y, Wang H, Zhao Q, Zhang T, Xie S, Liu Y, Tang Y, Peng Q, Pang W, Yao W, Zhou J. Geometric Constraints Regulate Energy Metabolism and Cellular Contractility in Vascular Smooth Muscle Cells by Coordinating Mitochondrial DNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203995. [PMID: 36106364 PMCID: PMC9661866 DOI: 10.1002/advs.202203995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) can adapt to changes in cellular geometric cues; however, the underlying mechanisms remain elusive. Using 2D micropatterned substrates to engineer cell geometry, it is found that in comparison with an elongated geometry, a square-shaped geometry causes the nuclear-to-cytoplasmic redistribution of DNA methyltransferase 1 (DNMT1), hypermethylation of mitochondrial DNA (mtDNA), repression of mtDNA gene transcription, and impairment of mitochondrial function. Using irregularly arranged versus circumferentially aligned vascular grafts to control cell geometry in 3D growth, it is demonstrated that cell geometry, mtDNA methylation, and vessel contractility are closely related. DNMT1 redistribution is found to be dependent on the phosphoinositide 3-kinase and protein kinase B (AKT) signaling pathways. Cell elongation activates cytosolic phospholipase A2, a nuclear mechanosensor that, when inhibited, hinders AKT phosphorylation, DNMT1 nuclear accumulation, and energy production. The findings of this study provide insights into the effects of cell geometry on SMC function and its potential implications in the optimization of vascular grafts.
Collapse
Affiliation(s)
- Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuefeng Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - He Wang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044P. R. China
| | - Si‐an Xie
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Qin Peng
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| |
Collapse
|
6
|
DNA Hypomethylation May Contribute to Metabolic Recovery of Frozen Wood Frog Brains. EPIGENOMES 2022; 6:epigenomes6030017. [PMID: 35893013 PMCID: PMC9326605 DOI: 10.3390/epigenomes6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional suppression is characteristic of extreme stress responses, speculated to preserve energetic resources in the maintenance of hypometabolism. In recent years, epigenetic regulation has become heavily implicated in stress adaptation of many animals, including supporting freeze tolerance of the wood frog (Rana sylvatica). However, nervous tissues are frequently lacking in these multi-tissue analyses which warrants investigation. The present study examines the role of DNA methylation, a core epigenetic mechanism, in the response of wood frog brains to freezing. We use immunoblot analysis to track the relative expression of DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins and ten-eleven-translocation (TET) demethylases across the freeze-thaw cycle in R. sylvatica brain, including selected comparisons to freeze-associated sub-stresses (anoxia and dehydration). Global methyltransferase activities and 5-hmC content were also assessed. The data show coordinated evidence for DNA hypomethylation in wood frog brains during freeze-recovery through the combined roles of depressed DNMT3A/3L expression driving lowered DNMT activity and increased TET2/3 levels leading to elevated 5-hmC genomic content (p < 0.05). Raised levels of DNMT1 during high dehydration were also noteworthy. The above suggest that alleviation of transcriptionally repressive 5-mC DNA methylation is a necessary component of the wood frog freeze-thaw cycle, potentially facilitating the resumption of a normoxic transcriptional state as frogs thaw and resume normal metabolic activities.
Collapse
|
7
|
Tang L, Li W, Xu H, Zheng X, Qiu S, He W, Wei Q, Ai J, Yang L, Liu J. Mutator-Derived lncRNA Landscape: A Novel Insight Into the Genomic Instability of Prostate Cancer. Front Oncol 2022; 12:876531. [PMID: 35860569 PMCID: PMC9291324 DOI: 10.3389/fonc.2022.876531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Increasing evidence has emerged to reveal the correlation between genomic instability and long non-coding RNAs (lncRNAs). The genomic instability-derived lncRNA landscape of prostate cancer (PCa) and its critical clinical implications remain to be understood. Methods Patients diagnosed with PCa were recruited from The Cancer Genome Atlas (TCGA) program. Genomic instability-associated lncRNAs were identified by a mutator hypothesis-originated calculative approach. A signature (GILncSig) was derived from genomic instability-associated lncRNAs to classify PCa patients into high-risk and low-risk groups. The biochemical recurrence (BCR) model of a genomic instability-derived lncRNA signature (GILncSig) was established by Cox regression and stratified analysis in the train set. Then its prognostic value and association with clinical features were verified by Kaplan–Meier (K-M) analysis and receiver operating characteristic (ROC) curve in the test set and the total patient set. The regulatory network of transcription factors (TFs) and lncRNAs was established to evaluate TF–lncRNA interactions. Results A total of 95 genomic instability-associated lncRNAs of PCa were identified. We constructed the GILncSig based on 10 lncRNAs with independent prognostic value. GILncSig separated patients into the high-risk (n = 121) group and the low-risk (n = 121) group in the train set. Patients with high GILncSig score suffered from more frequent BCR than those with low GILncSig score. The results were further validated in the test set, the whole TCGA cohort, and different subgroups stratified by age and Gleason score (GS). A high GILncSig risk score was significantly associated with a high mutation burden and a low critical gene expression (PTEN and CDK12) in PCa. The predictive performance of our BCR model based on GILncSig outperformed other existing BCR models of PCa based on lncRNAs. The GILncSig also showed a remarkable ability to predict BCR in the subgroup of patients with TP53 mutation or wild type. Transcription factors, such as FOXA1, JUND, and SRF, were found to participate in the regulation of lncRNAs with prognostic value. Conclusion In summary, we developed a prognostic signature of BCR based on genomic instability-associated lncRNAs for PCa, which may provide new insights into the epigenetic mechanism of BCR.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbo He
- West China Medical School of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| |
Collapse
|
8
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
9
|
Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H, Song J. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:45-68. [PMID: 36350506 PMCID: PMC11025882 DOI: 10.1007/978-3-031-11454-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.
Collapse
Affiliation(s)
- Shoji Tajima
- Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Isao Suetake
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | | | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hironobu Kimura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246291. [PMID: 34944912 PMCID: PMC8699582 DOI: 10.3390/cancers13246291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.
Collapse
|
12
|
Zhao X, Chen Y, Tan M, Zhao L, Zhai Y, Sun Y, Gong Y, Feng X, Du J, Fan Y. Extracellular Matrix Stiffness Regulates DNA Methylation by PKCα-Dependent Nuclear Transport of DNMT3L. Adv Healthc Mater 2021; 10:e2100821. [PMID: 34174172 DOI: 10.1002/adhm.202100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) stiffness has profound effects on the regulation of cell functions. DNA methylation is an important epigenetic modification governing gene expression. However, the effects of ECM stiffness on DNA methylation remain elusive. Here, it is reported that DNA methylation is sensitive to ECM stiffness, with a global hypermethylation under stiff ECM condition in mouse embryonic stem cells (mESCs) and embryonic fibroblasts compared with soft ECM. Stiff ECM enhances DNA methylation of both promoters and gene bodies, especially the 5' promoter regions of pluripotent genes. The enhanced DNA methylation is functionally required for the loss of pluripotent gene expression in mESCs grown on stiff ECM. Further experiments reveal that the nuclear transport of DNA methyltransferase 3-like (DNMT3L) is promoted by stiff ECM in a protein kinase C α (PKCα)-dependent manner and DNMT3L can be binding to Nanog promoter regions during cell-ECM interactions. These findings unveil DNA methylation as a novel target for the mechanical sensing mechanism of ECM stiffness, which provides a conserved mechanism for gene expression regulation during cell-ECM interactions.
Collapse
Affiliation(s)
- Xin‐Bin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yun‐Ping Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Min Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Lan Zhao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yuan‐Yuan Zhai
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yan‐Ling Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yan Gong
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yu‐Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
13
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
14
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
15
|
Storey K, Leder K, Hawkins-Daarud A, Swanson K, Ahmed AU, Rockne RC, Foo J. Glioblastoma Recurrence and the Role of O 6-Methylguanine-DNA Methyltransferase Promoter Methylation. JCO Clin Cancer Inform 2020; 3:1-12. [PMID: 30758983 DOI: 10.1200/cci.18.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tumor recurrence in glioblastoma multiforme (GBM) is often attributed to acquired resistance to the standard chemotherapeutic agent, temozolomide (TMZ). Promoter methylation of the DNA repair gene MGMT (O6-methylguanine-DNA methyltransferase) has been associated with sensitivity to TMZ, whereas increased expression of MGMT has been associated with TMZ resistance. Clinical studies have observed a downward shift in MGMT methylation percentage from primary to recurrent stage tumors; however, the evolutionary processes that drive this shift and more generally the emergence and growth of TMZ-resistant tumor subpopulations are still poorly understood. Here, we develop a mathematical model, parameterized using clinical and experimental data, to investigate the role of MGMT methylation in TMZ resistance during the standard treatment regimen for GBM-surgery, chemotherapy, and radiation. We first found that the observed downward shift in MGMT promoter methylation status between detection and recurrence cannot be explained solely by evolutionary selection. Next, our model suggests that TMZ has an inhibitory effect on maintenance methylation of MGMT after cell division. Finally, incorporating this inhibitory effect, we study the optimal number of TMZ doses per adjuvant cycle for patients with GBM with high and low levels of MGMT methylation at diagnosis.
Collapse
Affiliation(s)
- Katie Storey
- University of Minnesota Twin Cities, Minneapolis, MN
| | - Kevin Leder
- University of Minnesota Twin Cities, Minneapolis, MN
| | | | | | - Atique U Ahmed
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Jasmine Foo
- University of Minnesota Twin Cities, Minneapolis, MN
| |
Collapse
|
16
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
17
|
Zhang J, Hawkins LJ, Storey KB. DNA methylation and regulation of DNA methyltransferases in a freeze-tolerant vertebrate. Biochem Cell Biol 2019; 98:145-153. [PMID: 31116953 DOI: 10.1139/bcb-2019-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The wood frog is one of the few freeze-tolerance vertebrates. This is accomplished in part by the accumulation of cryoprotectant glucose, metabolic rate depression, and stress response activation. These may be achieved by mechanisms such as DNA methylation, which is typically associated with transcriptional repression. Hyperglycemia is also associated with modifications to epigenetic profiles, indicating an additional role that the high levels of glucose play in freeze tolerance. We sought to determine whether DNA methylation is affected during freezing exposure, and whether this is due to the wood frog's response to hyperglycemia. We examined global DNA methylation and DNA methyltransferases (DNMTs) in the liver and muscle of frozen and glucose-loaded wood frogs. The results showed that levels of 5-methylcytosine (5mC) increased in the muscle, suggesting elevated DNA methylation during freezing. DNMT activities also decreased in muscle during thawing, glucose loading, and in vitro glucose experiments. Liver DNMT activities were similar to muscle; however, a varied response to DNMT levels and a decrease in 5mC highlight the metabolic role the liver plays during freezing. Glucose was also shown to decrease DNMT activity levels in the wood frog, in vitro, elucidating a potentially novel regulatory mechanism. Together these results suggest an interplay between freeze tolerance and hyperglycemic regulation of DNA methylation.
Collapse
Affiliation(s)
- Jing Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
18
|
Kori S, Ferry L, Matano S, Jimenji T, Kodera N, Tsusaka T, Matsumura R, Oda T, Sato M, Dohmae N, Ando T, Shinkai Y, Defossez PA, Arita K. Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure 2019; 27:485-496.e7. [PMID: 30639225 DOI: 10.1016/j.str.2018.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.
Collapse
Affiliation(s)
- Satomi Kori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Laure Ferry
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Shohei Matano
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Tomohiro Jimenji
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Rumie Matsumura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Pierre-Antoine Defossez
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France.
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
19
|
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9:genes9120620. [PMID: 30544982 PMCID: PMC6316889 DOI: 10.3390/genes9120620] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating gene expression, genomic stability and cell lineage commitment. The establishment and maintenance of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs): DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA methylation patterns during replication. Both groups of DNMTs are multi-domain proteins, containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase domain. Recent structure-function investigations of the individual domains or large fragments of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B, which is essential for the precise establishment and maintenance of lineage-specific DNA methylation patterns in cells. This review summarizes current understanding of the structure and mechanism of DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation between the methyltransferase and regulatory domains.
Collapse
Affiliation(s)
- Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
21
|
Ryu JM, Lee SH, Seong JK, Han HJ. Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle 2016; 14:3292-305. [PMID: 26375799 DOI: 10.1080/15384101.2015.1087620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although glutamine (Gln) is not an essential amino acid, it is considered a critical substrate in many key metabolic processes that control a variety of physiological functions and are involved in regulating early embryonic development. Thus, we investigated the effect of Gln on regulation of mouse embryonic stem cell (mESC) self-renewal and related signaling pathways. Gln deprivation decreased Oct4 expression as well as expression of cell cycle regulatory proteins. However, Gln treatment retained the expression of cell cycle regulatory proteins and the Oct4 in mESCs, which were blocked by compound 968 (a glutaminase inhibitor). In addition, Gln stimulated PI3K/Akt pathway, which subsequently elicited PKCϵ translocation to membrane without an influx of intracellular Ca(2+). Inhibition of Akt and PKC blocked Gln-induced Oct4 expression and proliferation. Gln also stimulated mTOR phosphorylation in a time-dependent manner, which abolished by PKC inhibition. Furthermore, Gln increased the cellular population of both Oct4 and bromodeoxyuridine positive cells, suggesting that Gln regulates self-renewal ability of mESCs. Gln induced a decrease in HDAC1, but not in HDAC2, which were blocked by PKC inhibitors. Gln treatment resulted in an increase in global histone acetylation and methylation. In addition, Gln significantly reduced methylation of the Oct4 promoter region through decrease in DNMT1 and DNMT3a expression, which were blocked by PKC and HDAC inhibitors. In conclusion, Gln stimulates mESC proliferation and maintains mESC undifferentiation status through transcription regulation via the Akt, PKCϵ, and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Sang Hun Lee
- b Medical Science Research Institute, Soonchunhyang University Seoul Hospital ; Seoul , Korea
| | - Je Kyung Seong
- c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea.,d Department of Anatomy and Cell Biology ; Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Ho Jae Han
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea.,c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea
| |
Collapse
|
22
|
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res 2016; 44:8556-8575. [PMID: 27521372 PMCID: PMC5062992 DOI: 10.1093/nar/gkw723] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
In mammals, DNA methylation is introduced by the DNMT1, DNMT3A and DNMT3B methyltransferases, which are all large multi-domain proteins containing a catalytic C-terminal domain and an N-terminal part with regulatory functions. Recently, two novel regulatory principles of DNMTs were uncovered. It was shown that their catalytic activity is under allosteric control of N-terminal domains with autoinhibitory function, the RFT and CXXC domains in DNMT1 and the ADD domain in DNMT3. Moreover, targeting and activity of DNMTs were found to be regulated in a concerted manner by interactors and posttranslational modifications (PTMs). In this review, we describe the structures and domain composition of the DNMT1 and DNMT3 enzymes, their DNA binding, catalytic mechanism, multimerization and the processes controlling their stability in cells with a focus on their regulation and chromatin targeting by PTMs, interactors and chromatin modifications. We propose that the allosteric regulation of DNMTs by autoinhibitory domains acts as a general switch for the modulation of the function of DNMTs, providing numerous possibilities for interacting proteins, nucleic acids or PTMs to regulate DNMT activity and targeting. The combined regulation of DNMT targeting and catalytic activity contributes to the precise spatiotemporal control of DNMT function and genome methylation in cells.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institute of Biochemistry, Pfaffenwaldring 55, Faculty of Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:87-122. [PMID: 27826836 DOI: 10.1007/978-3-319-43624-1_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg, D-69120, Germany.
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany.
| |
Collapse
|
24
|
Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:63-86. [PMID: 27826835 DOI: 10.1007/978-3-319-43624-1_4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, three DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains, and in this chapter, the structures and functions of these domains are described.
Collapse
Affiliation(s)
- Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- CREST/AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Kohei Takeshita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- PRESTO/JST, Saitama, 332-0012, Japan
| | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hironobu Kimura
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
25
|
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J, Rein T. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci Signal 2015; 8:ra119. [DOI: 10.1126/scisignal.aac7695] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Abstract
From a fertilised egg to a mature organism, cells divide and accumulate epigenetic information, which is faithfully passed on to daughter cells. DNA methylation consolidates the memory of the developmental history and, albeit very stable, it is not immutable and DNA methylation patterns can be deconstructed – a process that is essential to regain totipotency. Research into DNA methylation erasure gained momentum a few years ago with the discovery of 5-hydroxymethylcytosine, an oxidation product of 5-methylcytosine. The role of this new epigenetic modification in DNA demethylation and other potential epigenetic roles are discussed here. But what are the mechanisms that regulate deposition of epigenetic modifications? Until recently, limited direct evidence indicated that signalling molecules are able to modulate the function of epigenetic modifiers, which shape the epigenome in the nucleus of the cell. New reports in embryonic stem cell model systems disclosed a tight relationship between major signalling pathways and the DNA methylation machinery, which opens up exciting avenues in the relationship between external signals and epigenetic memory. Here, I discuss mechanisms and concepts in DNA methylation patterning, the implications in normal development and disease, and future directions.
Collapse
Affiliation(s)
- Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, London EC1M 6BQ, UK
| |
Collapse
|
27
|
Putnik M, Wojdacz TK, Pournara A, Vahter M, Wallberg AE. MS-HRM assay identifies high levels of epigenetic heterogeneity in human immortalized cell lines. Gene 2015; 560:165-72. [DOI: 10.1016/j.gene.2015.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/29/2015] [Indexed: 02/08/2023]
|
28
|
Miklos W, Pelivan K, Kowol CR, Pirker C, Dornetshuber-Fleiss R, Spitzwieser M, Englinger B, van Schoonhoven S, Cichna-Markl M, Koellensperger G, Keppler BK, Berger W, Heffeter P. Triapine-mediated ABCB1 induction via PKC induces widespread therapy unresponsiveness but is not underlying acquired triapine resistance. Cancer Lett 2015; 361:112-20. [PMID: 25749419 DOI: 10.1016/j.canlet.2015.02.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Although triapine is promising for treatment of advanced leukemia, it failed against solid tumors due to widely unknown reasons. To address this issue, a new triapine-resistant cell line (SW480/tria) was generated by drug selection and investigated in this study. Notably, SW480/tria cells displayed broad cross-resistance against several known ABCB1 substrates due to high ABCB1 levels (induced by promoter hypomethylation). However, ABCB1 inhibition did not re-sensitize SW480/tria cells to triapine and subsequent analysis revealed that triapine is only a weak ABCB1 substrate without significant interaction with the ABCB1 transport function. Interestingly, in chemo-naive, parental SW480 cells short-time (24 h) treatment with triapine stimulated ABCB1 expression. These effects were based on activation of protein kinase C (PKC), a known response to cellular stress. In accordance, SW480/tria cells were characterized by elevated levels of PKC. Together, this led to the conclusion that increased ABCB1 expression is not the major mechanism of triapine resistance in SW480/tria cells. In contrast, increased ABCB1 expression was found to be a consequence of triapine stress-induced PKC activation. These data are especially of importance when considering the choice of chemotherapeutics for combination with triapine.
Collapse
Affiliation(s)
- W Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Pelivan
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - R Dornetshuber-Fleiss
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Department of Pharmacology and Toxicology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - M Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - G Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - W Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - P Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|
29
|
Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci 2014; 4:46. [PMID: 25949795 PMCID: PMC4422219 DOI: 10.1186/2045-3701-4-46] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Aberrant promoter hypermethylation of CpG islands associated with tumor suppressor genes can lead to transcriptional silencing and result in tumorigenesis. DNA methyltransferases (DNMTs) are the enzymes responsible for DNA methylation and have been reported to be over-expressed in various cancers. This review highlights the current status of transcriptional and post-translational regulation of the DNMT expression and activity with a focus on dysregulation involved in tumorigenesis. The transcriptional up-regulation of DNMT gene expression can be induced by Ras-c-Jun signaling pathway, Sp1 and Sp3 zinc finger proteins and virus oncoproteins. Transcriptional repression on DNMT genes has also been reported for p53, RB and FOXO3a transcriptional regulators and corepressors. In addition, the low expressions of microRNAs 29 family, 143, 148a and 152 are associated with DNMTs overexpression in various cancers. Several important post-translational modifications including acetylation and phosphorylation have been reported to mediate protein stability and activity of the DNMTs especially DNMT1. In this review, we also discuss drugs targeting DNMT protein expression and activation for therapeutic strategy against cancer.
Collapse
|
30
|
Abdel-Halim M, Diesel B, Kiemer AK, Abadi AH, Hartmann RW, Engel M. Discovery and optimization of 1,3,5-trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C-ζ. J Med Chem 2014; 57:6513-30. [PMID: 25058929 DOI: 10.1021/jm500521n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is increasing evidence that the atypical protein kinase C, PKCζ, might be a therapeutic target in pulmonary and hepatic inflammatory diseases. However, targeting the highly conserved ATP-binding pocket in the catalytic domain held little promise to achieve selective inhibition. In the present study, we introduce 1,3,5-trisubstituted pyrazolines as potent and selective allosteric PKCζ inhibitors. The rigid scaffold offered many sites for modification, all acting as hot spots for improving activity, and gave rise to sharp structure-activity relationships. Targeting of PKCζ in cells was confirmed by reporter gene assay, transfection assays, and Western blotting. The strongly reduced cell-free and cellular activities toward a PIF-pocket mutant of PKCζ suggested that the inhibitors most likely bound to the PIF-pocket on the kinase catalytic domain. Thus, using a rigidification strategy and by establishing and optimizing multiple molecular interactions with the binding site, we were able to significantly improve the potency of the previously reported PKCζ inhibitors.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, D-66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Scott A, Song J, Ewing R, Wang Z. Regulation of protein stability of DNA methyltransferase 1 by post-translational modifications. Acta Biochim Biophys Sin (Shanghai) 2014; 46:199-203. [PMID: 24389641 DOI: 10.1093/abbs/gmt146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that ensures correct gene expression and maintains genetic stability. DNA methyltransferase 1 (DNMT1) is the primary enzyme that maintains DNA methylation during replication. Dysregulation of DNMT1 is implicated in a variety of diseases. DNMT1 protein stability is regulated via various post-translational modifications, such as acetylation and ubiquitination, but also through protein-protein interactions. These mechanisms ensure DNMT1 is properly activated during the correct time of the cell cycle and at correct genomic loci, as well as in response to appropriate extracellular cues. Further understanding of these regulatory mechanisms may help to design novel therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Anthony Scott
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
32
|
Brodie SA, Li G, El-Kommos A, Kang H, Ramalingam SS, Behera M, Gandhi K, Kowalski J, Sica GL, Khuri FR, Vertino PM, Brandes JC. Class I HDACs are mediators of smoke carcinogen-induced stabilization of DNMT1 and serve as promising targets for chemoprevention of lung cancer. Cancer Prev Res (Phila) 2014; 7:351-61. [PMID: 24441677 DOI: 10.1158/1940-6207.capr-13-0254] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA methylation is an early event in bronchial carcinogenesis and increased DNA methyltransferase (DNMT)1 protein expression is a crucial step in the oncogenic transformation of epithelia. Here, we investigate the role of class I histone deacetylases (HDAC) 1 to 3 in the stabilization of DNMT1 protein and as a potential therapeutic target for lung cancer chemoprevention. Long-term exposure of immortalized bronchial epithelial cells (HBEC-3KT) to low doses of tobacco-related carcinogens led to oncogenic transformation, increased HDAC expression, cell-cycle independent increased DNMT1 stability, and DNA hypermethylation. Overexpression of HDACs was associated with increased DNMT1 stability and knockdown of HDACs reduced DNMT1 protein levels and induced DNMT1 acetylation. This suggests a causal relationship among increased class I HDACs levels, upregulation of DNMT1 protein, and subsequent promoter hypermethylation. Targeting of class I HDACs with valproic acid (VPA) was associated with reduced HDAC expression and a profound reduction of DNMT1 protein level. Treatment of transformed bronchial epithelial cells with VPA resulted in reduced colony formation, demethylation of the aberrantly methylated SFRP2 promoter, and derepression of SFRP2 transcription. These data suggest that inhibition of HDAC activity may reverse or prevent carcinogen-induced transformation. Finally, immunohistochemistry on human lung cancer specimens revealed a significant increase in DNMT1, HDAC1, HDAC2, and HDAC3 expression, supporting our hypotheses that class I HDACs are mediators of DNMT1 stability. In summary, our study provides evidence for an important role of class I HDACs in controlling the stability of DNMT1 and suggests that HDAC inhibition could be an attractive approach for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Seth A Brodie
- Atlanta VAMC, Winship Cancer Institute, Atlanta, GA 30322.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aberrant DNA methylation in human cancers. ACTA ACUST UNITED AC 2013; 33:798-804. [PMID: 24337838 DOI: 10.1007/s11596-013-1201-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 11/15/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in diseases, including human cancers. In recent years, our understanding on DNA methylation with human cancers has made significant progress, which was facilitated by stunning development in the analysis of the human methylome of multiple cancer types. In this review, recent developments in the characterization of aberrant DNA methylation involved in human cancers development were discussed with special emphasis on the mechanisms of aberrant DNA methylation in human cancers. We also summarize the recent treatment strategy for human cancers with de-methylation drugs.
Collapse
|
34
|
Xia L, Wang TD, Shen SM, Zhao M, Sun H, He Y, Xie L, Wu ZX, Han SF, Wang LS, Chen GQ. Phosphoproteomics study on the activated PKCδ-induced cell death. J Proteome Res 2013; 12:4280-301. [PMID: 23879269 DOI: 10.1021/pr400089v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proteolytic activation of protein kinase Cδ (PKCδ) generates a catalytic fragment called PKCδ-CF, which induces cell death. However, the mechanisms underlying PKCδ-CF-mediated cell death are largely unknown. On the basis of an engineering leukemic cell line with inducible expression of PKCδ-CF, here we employ SILAC-based quantitative phosphoproteomics to systematically and dynamically investigate the overall phosphorylation events during cell death triggered by PKCδ-CF expression. Totally, 3000 phosphorylation sites were analyzed. Considering the fact that early responses to PKCδ-CF expression initiate cell death, we sought to identify pathways possibly related directly with PKCδ by further analyzing the data set of phosphorylation events that occur in the initiation stage of cell death. Interacting analysis of this data set indicates that PKCδ-CF triggers complicated networks to initiate cell death, and motif analysis and biochemistry verification reveal that several kinases in the downstream of PKCδ conduct these networks. By analysis of the specific sequence motif of kinase-substrate, we also find 59 candidate substrates of PKCδ from the up-regulated phosphopeptides, of which 12 were randomly selected for in vitro kinase assay and 9 were consequently verified as substrates of PKCδ. To our greatest understanding, this study provides the most systematic analysis of phosphorylation events initiated by the cleaved activated PKCδ, which would vastly extend the profound understanding of PKCδ-directed signal pathways in cell death. The MS data have been deposited to the ProteomeXchange with identifier PXD000225.
Collapse
Affiliation(s)
- Li Xia
- The Department of Pathophysiology and Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM) , Shanghai, P.R. China , 200025
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sunahori K, Nagpal K, Hedrich CM, Mizui M, Fitzgerald LM, Tsokos GC. The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients. J Biol Chem 2013; 288:21936-44. [PMID: 23775084 DOI: 10.1074/jbc.m113.467266] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA hypomethylation is a characteristic feature of systemic lupus erythematosus (SLE) immune cells. Numerous reports have implicated the involvement of the MEK/ERK pathway in the reduction of DNA methyltransferase (DNMT) expression, hence inducing the transcription of methylation-sensitive genes in SLE patients. However, the molecular mechanisms involved remain unclear. Here, we investigated whether the catalytic subunit of protein phosphatase 2A (PP2Ac), which is overexpressed in SLE T-cells, contributes to reduced DNA methylation. We show that both chemical suppression and siRNA silencing of PP2Ac in T-cells resulted in sustained phosphorylation of MEK and ERK following stimulation with phorbol 12-myristate 13-acetate and ionomycin. Furthermore, PP2Ac suppression resulted in increased DNMT enzyme activity, DNA hypermethylation, and decreased expression of methylation-sensitive genes. Similarly, in SLE T-cells, suppression of PP2Ac resulted in increased MEK/ERK phosphorylation, enhanced DNMT1 expression and suppressed expression of the methylation-sensitive CD70 gene. Our results demonstrate that PP2A regulates DNA methylation by influencing the phosphorylation of MEK/ERK. We propose that enhanced PP2Ac in SLE T-cells may dephosphorylate and activate the signaling pathway upstream of DNMT1, thus disturbing the tight control of methylation-sensitive genes, which are involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Katsue Sunahori
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kullmann K, Deryal M, Ong MF, Schmidt W, Mahlknecht U. DNMT1 genetic polymorphisms affect breast cancer risk in the central European Caucasian population. Clin Epigenetics 2013; 5:7. [PMID: 23638630 PMCID: PMC3646668 DOI: 10.1186/1868-7083-5-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/16/2013] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION DNA methylation of CpG islands within the promoter region of genes is an epigenetic modification with an important role in the development of cancer and it is typically mediated by DNA methyltransferases (DNMTs). In cancer cells, global hypomethylation of the genome as a whole and regional hypermethylation of CpG islands have been reported. Four groups of DNMTs have been identified: DNMT1, DNMT2 (TRDMT1), DNMT3A and DNMT3B. DNMT2 uses the catalytic mechanism of DNMTs, but does in fact methylate RNA. Little is known about the significance of these genes in human breast cancer. In the study presented herein, we analyzed five distinct DNMT single SNPs with regard to potential associations with breast cancer risk. CASE DESCRIPTION In this study, we genotyped 221 female Caucasian breast cancer patients and 221 female Caucasian healthy controls, and we used five allele-specific real-time polymerase chain reaction (qPCR) assays. We selected one locus within the DNMT1 gene and two loci within the DNMT3A and DNMT3B genes, respectively. Statistics were calculated using the chi-squared and Fisher's exact tests, and correlated with clinical parameters such as age, diagnosis, histology, TNM stage, hormonal receptor status, human epidermal growth factor receptor 2 (HER2) status, response to treatment and survival. Statistically significant results were obtained for correlations with the DNMT1 gene. DISCUSSION AND EVALUATION Five genomic loci within the DNMT1, DNMT3A and DNMT3B genes were assessed. Statistical significance (P = 0.030) was identified for DNMT1 SNP (A201G, rs2228612): six women within the control group were GG homozygous (variant), while this mutation was absent in the breast cancer group. CONCLUSIONS We conclude that women with the DNMT1 SNP (A201G, rs2228612) GG homozygous genotype (variant) have a lower risk of developing breast cancer compared to heterozygous or wildtype genotypes. To date, alterations within the DNMT1 gene have not been reported to be associated with cancer in the Caucasian population.
Collapse
Affiliation(s)
- Kathrin Kullmann
- Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, José Carreras Research Center, Saarland University Medical Center, Homburg/Saar D-66421, Germany.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The discovery of epigenetic processes as possible pivotal regulatory mechanisms in psychiatric diseases raised the question of how psychoactive drugs may impact the epigenetic machinery. In the present study we set out to explore the specificity and the mode of action of the reported inhibitory effect of the TCA (tricyclic antidepressant) amitriptyline on DNMT (DNA methyltransferase) activity in primary astrocytes from the rat cortex. We found that the impact on DNMT was shared by another TCA, imipramine, and by paroxetine, but not by venlafaxine or the mood stabilizers carbamazepine and valproic acid. DNMT activity in subventricular neural stem cells was refractory to the action of ADs (antidepressants). Among the established DNMTs, ADs primarily targeted DNMT1. The reduction of enzymatic DNMT1 activity was neither due to reduced DNMT1 expression nor due to direct drug interference. We tested putative DNMT1-inhibitory mechanisms and discovered that a known stimulator of DNMT1, the histone methyltransferase G9a, exhibited decreased protein levels and interactions with DNMT1 upon AD exposure. Adding recombinant G9a completely reversed the AD repressive effect on DNMT1 function. In conclusion, the present study presents a model where distinct ADs affect DNMT1 activity via G9a with important repercussions for possible novel treatment regimes.
Collapse
|
38
|
Rangel-Salazar R, Wickström-Lindholm M, Aguilar-Salinas CA, Alvarado-Caudillo Y, Døssing KBV, Esteller M, Labourier E, Lund G, Nielsen FC, Rodríguez-Ríos D, Solís-Martínez MO, Wrobel K, Wrobel K, Zaina S. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages. BMC Genomics 2011; 12:582. [PMID: 22118513 PMCID: PMC3247910 DOI: 10.1186/1471-2164-12-582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/25/2011] [Indexed: 01/31/2023] Open
Abstract
Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.
Collapse
|