1
|
Willers H, Pan X, Borgeaud N, Korovina I, Koi L, Egan R, Greninger P, Rosenkranz A, Kung J, Liss AS, Parsels LA, Morgan MA, Lawrence TS, Lin SH, Hong TS, Yeap BY, Wirth L, Hata AN, Ott CJ, Benes CH, Baumann M, Krause M. Screening and Validation of Molecular Targeted Radiosensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e63-e74. [PMID: 34343607 DOI: 10.1016/j.ijrobp.2021.07.1694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
The development of molecular targeted drugs with radiation and chemotherapy are critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of inter-tumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have employed 3D cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the NCI CTEP portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with/without relevant biomarker and utilizing clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts to be successfully incorporated into the standard management of hard-to-treat tumors.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Xiao Pan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Borgeaud
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden
| | - Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Regina Egan
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Aliza Rosenkranz
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jong Kung
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leslie A Parsels
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lori Wirth
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Christopher J Ott
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Core center Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner site Dresden, Germany
| |
Collapse
|
3
|
Wang M, Morsbach F, Sander D, Gheorghiu L, Nanda A, Benes C, Kriegs M, Krause M, Dikomey E, Baumann M, Dahm-Daphi J, Settleman J, Willers H. EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res 2011; 71:6261-9. [PMID: 21852385 DOI: 10.1158/0008-5472.can-11-0213] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms by which inhibition of the epidermal growth factor receptor (EGFR) sensitizes non-small cell lung cancer (NSCLC) cells to ionizing radiation remain poorly understood. We set out to characterize the radiosensitizing effects of the tyrosine kinase inhibitor erlotinib and the monoclonal antibody cetuximab in NSCLC cells that contain wild-type p53. Unexpectedly, EGFR inhibition led to pronounced cellular senescence but not apoptosis of irradiated cells, both in vitro and in vivo. Senescence was completely dependent on wild-type p53 and associated with a reduction in cell number as well as impaired clonogenic radiation survival. Study of ten additional NSCLC cell lines revealed that senescence is a prominent mechanism of radiosensitization in 45% of cell lines and occurs not only in cells with wild-type p53 but also in cells with mutant p53, where it is associated with an induction of p16. Interestingly, senescence and radiosensitization were linked to an increase in residual radiation-induced DNA double-strand breaks irrespective of p53/p16 status. This effect of EGFR inhibition was at least partially mediated by disruption of the MEK-ERK pathway. Thus, our data indicate a common mechanism of radiosensitization by erlotinib or cetuximab across diverse genetic backgrounds. Our findings also suggest that assays that are able to capture the initial proliferative delay that is associated with senescence should be useful for screening large cell line panels to identify genomic biomarkers of EGFR inhibitor-mediated radiosensitization.
Collapse
Affiliation(s)
- Meng Wang
- Laboratory of Cellular & Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|