1
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
3
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Current status of PET imaging in Huntington's disease. Eur J Nucl Med Mol Imaging 2016; 43:1171-82. [PMID: 26899245 PMCID: PMC4844650 DOI: 10.1007/s00259-016-3324-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Purpose To review the developments of recent decades and the current status of PET molecular imaging in Huntington’s disease (HD). Methods A systematic review of PET studies in HD was performed. The MEDLINE, Web of Science, Cochrane and Scopus databases were searched for articles in all languages published up to 19 August 2015 using the major medical subject heading “Huntington Disease” combined with text and key words “Huntington Disease”, “Neuroimaging” and “PET”. Only peer-reviewed, primary research studies in HD patients and premanifest HD carriers, and studies in which clinical features were described in association with PET neuroimaging results, were included in this review. Reviews, case reports and nonhuman studies were excluded. Results A total of 54 PET studies were identified and analysed in this review. Brain metabolism ([18F]FDG and [15O]H2O), presynaptic ([18F]fluorodopa, [11C]β-CIT and [11C]DTBZ) and postsynaptic ([11C]SCH22390, [11C]FLB457 and [11C]raclopride) dopaminergic function, phosphodiesterases ([18F]JNJ42259152, [18F]MNI-659 and [11C]IMA107), and adenosine ([18F]CPFPX), cannabinoid ([18F]MK-9470), opioid ([11C]diprenorphine) and GABA ([11C]flumazenil) receptors were evaluated as potential biomarkers for monitoring disease progression and for assessing the development and efficacy of novel disease-modifying drugs in premanifest HD carriers and HD patients. PET studies evaluating brain restoration and neuroprotection were also identified and described in detail. Conclusion Brain metabolism, postsynaptic dopaminergic function and phosphodiesterase 10A levels were proven to be powerful in assessing disease progression. However, no single technique may be currently considered an optimal biomarker and an integrative multimodal imaging approach combining different techniques should be developed for monitoring potential neuroprotective and preventive treatment in HD.
Collapse
|
5
|
Politis M, Niccolini F. Serotonin in Parkinson's disease. Behav Brain Res 2015; 277:136-45. [DOI: 10.1016/j.bbr.2014.07.037] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/04/2023]
|
6
|
Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 2014; 10:708-22. [PMID: 25385334 DOI: 10.1038/nrneurol.2014.205] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past three decades, neuroimaging studies-including structural, functional and molecular modalities-have provided invaluable insights into the mechanisms underlying Parkinson disease (PD). Observations from multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical changes that affect receptor sites and neurotransmitter systems. Characterization of the neurobiological alterations that lead to phenotypic heterogeneity in patients with PD has considerably aided the in vivo investigation of aetiology and pathophysiology, and the identification of novel targets for pharmacological or surgical treatments, including cell therapy. Although PD is now considered to be very complex, no neuroimaging modalities are specifically recommended for routine use in clinical practice. However, conventional MRI and dopamine transporter imaging are commonly used as adjuvant tools in the differential diagnosis between PD and nondegenerative causes of parkinsonism. First-line neuroimaging tools that could have an impact on patient prognosis and treatment strategies remain elusive. This Review discusses the lessons learnt from decades of neuroimaging research in PD, and the promising new approaches with potential applicability to clinical practice.
Collapse
Affiliation(s)
- Marios Politis
- Neurodegeneration Imaging Group, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
7
|
Canet-Aviles R, Lomax GP, Feigal EG, Priest C. Proceedings: cell therapies for Parkinson's disease from discovery to clinic. Stem Cells Transl Med 2014; 3:979-91. [PMID: 25150264 DOI: 10.5966/sctm.2014-0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In March 2013, the California Institute for Regenerative Medicine, in collaboration with the NIH Center for Regenerative Medicine, held a 2-day workshop on cell therapies for Parkinson's disease (PD), with the goals of reviewing the state of stem cell research for the treatment of PD and discussing and refining the approach and the appropriate patient populations in which to plan and conduct new clinical trials using stem cell-based therapies for PD. Workshop participants identified priorities for research, development, and funding; discussed existing resources and initiatives; and outlined a path to the clinic for a stem cell-based therapy for PD. A consensus emerged among participants that the development of cell replacement therapies for PD using stem cell-derived products could potentially offer substantial benefits to patients. As with all stem cell-based therapeutic approaches, however, there are many issues yet to be resolved regarding the safety, efficacy, and methodology of transplanting cell therapies into patients. Workshop participants agreed that designing an effective stem cell-based therapy for PD will require further research and development in several key areas. This paper summarizes the meeting.
Collapse
Affiliation(s)
- Rosa Canet-Aviles
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Geoffrey P Lomax
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Ellen G Feigal
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Catherine Priest
- California Institute for Regenerative Medicine, San Francisco, California, USA
| |
Collapse
|
8
|
Niccolini F, Loane C, Politis M. Dyskinesias in Parkinson's disease: views from positron emission tomography studies. Eur J Neurol 2014; 21:694-9, e39-43. [PMID: 24471508 DOI: 10.1111/ene.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Abstract
Levodopa-induced dyskinesias (LIDs) and graft-induced dyskinesias (GIDs) are serious and common complications of Parkinson's disease (PD) management following chronic treatment with levodopa or intrastriatal transplantation with dopamine-rich foetal ventral mesencephalic tissue, respectively. Positron emission tomography (PET) molecular imaging provides a powerful in vivo tool that has been employed over the past 20 years for the elucidation of mechanisms underlying the development of LIDs and GIDs in PD patients. PET used together with radioligands tagging molecular targets has allowed the functional investigation of several systems in the brain including the dopaminergic, serotonergic, glutamatergic, opioid, endocannabinoid, noradrenergic and cholinergic systems. In this article the role of PET imaging in unveiling pathophysiological mechanisms underlying the development of LIDs and GIDs in PD patients is reviewed.
Collapse
Affiliation(s)
- F Niccolini
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK; Neurodegeneration Imaging Group, Department of Clinical Neuroscience, King's College London, London, UK
| | | | | |
Collapse
|
9
|
|
10
|
Positron emission tomography imaging in neurological disorders. J Neurol 2013; 259:1769-80. [PMID: 22297461 DOI: 10.1007/s00415-012-6428-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/28/2023]
Abstract
Positron emission tomography (PET) is a powerful tool for in vivo imaging investigations of human brain function. It provides non-invasive quantification of brain metabolism, receptor binding of various neurotransmitter systems, and alterations in regional blood flow. The use of PET in a clinical setting is still limited due to the high costs of cyclotrons and radiochemical laboratories. However, once these limitations can be bypassed, PET could aid clinical practice by providing a useful imaging technique for the diagnosis, the planning of treatment, and the prediction outcome in various neurological diseases.This review aims to explain the PET imaging technique and its applications in neurological disorders such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and dementias.
Collapse
|
11
|
Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson's disease. BMC Med 2012; 10:1. [PMID: 22216957 PMCID: PMC3261810 DOI: 10.1186/1741-7015-10-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/04/2012] [Indexed: 01/29/2023] Open
Abstract
Cell replacement therapies in Parkinson's disease (PD) aim to provide long-lasting relief of patients' symptoms. Previous clinical trials using transplantation of human fetal ventral mesencephalic (hfVM) tissue in the striata of PD patients have provided proof-of-principle that such grafts can restore striatal dopaminergic (DA-ergic) function. The transplants survive, reinnervate the striatum, and generate adequate symptomatic relief in some patients for more than a decade following operation. However, the initial clinical trials lacked homogeneity of outcomes and were hindered by the development of troublesome graft-induced dyskinesias in a subgroup of patients. Although recent knowledge has provided insights for overcoming these obstacles, it is unlikely that transplantation of hfVM tissue will become routine treatment for PD owing to problems with tissue availability and standardization of the grafts. The main focus now is on producing DA-ergic neuroblasts for transplantation from stem cells (SCs). There is a range of emerging sources of SCs for generating a DA-ergic fate in vitro. However, the translation of these efforts in vivo currently lacks efficacy and sustainability. A successful, clinically competitive SC therapy in PD needs to produce long-lasting symptomatic relief without side effects while counteracting PD progression.
Collapse
Affiliation(s)
- Marios Politis
- Centre for Neuroscience, Department of Medicine, Imperial College London, Hammersmith Hospital, DuCane Road, London W12 0NN, UK.
| | | |
Collapse
|
12
|
Evans JR, Mason SL, Barker RA. Current status of clinical trials of neural transplantation in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00008-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Politis M, Piccini P. In vivo imaging of the integration and function of nigral grafts in clinical trials. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195420 DOI: 10.1016/b978-0-444-59575-1.00009-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vivo functional imaging has provided objective evidence for the integration and function of nigral grafts in the brains of patients with Parkinson's disease. Clinical trials with the use of positron emission tomography have shown that transplants of human dopamine-rich fetal ventral mesencephalic tissue can survive, grow, and release dopamine providing motor symptom relief, and also that they can restore brain activation related to movement. Positron emission tomography has aided in the elucidation of the pathophysiology of serious adverse effects, so-called graft-induced dyskinesias. With the use of newly established radioligands, positron emission tomography and single-photon emission computed tomography could help to improve Parkinson's patient selection in future clinical trials by selecting those with better predicted outcomes. Moreover, positron emission tomography could help monitoring postoperational inflammatory processes around the grafted tissue and the effect of immunosuppression. Recent evidence from positron emission tomography has provided insight of how ongoing extrastriatal serotonergic denervation may have relevance to nonmotor symptoms in transplanted Parkinson's disease patients indicating new cell therapy targets for a more complete relief of symptoms. Functional and structural magnetic resonance imaging techniques could help to better assess the integration of nigral graft with the host brain by assessing the restoration of brain activation during movement and of functional and structural connectivity. This knowledge should lead to the development of new, optimized in vivo imaging protocols that could help to better schedule, monitor, and modify the clinical outcomes of future human trials assessing the efficacy of fetal or stem cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Marios Politis
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| | | |
Collapse
|