1
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
2
|
Barry LA, Kay GW, Mitchell NL, Murray SJ, Jay NP, Palmer DN. Aggregation chimeras provide evidence of in vivo intercellular correction in ovine CLN6 neuronal ceroid lipofuscinosis (Batten disease). PLoS One 2022; 17:e0261544. [PMID: 35404973 PMCID: PMC9000108 DOI: 10.1371/journal.pone.0261544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are fatal, mainly childhood, inherited neurodegenerative lysosomal storage diseases. Sheep affected with a CLN6 form display progressive regionally defined glial activation and subsequent neurodegeneration, indicating that neuroinflammation may be causative of pathogenesis. In this study, aggregation chimeras were generated from homozygous unaffected normal and CLN6 affected sheep embryos, resulting in seven chimeric animals with varied proportions of normal to affected cells. These sheep were classified as affected-like, recovering-like or normal-like, based on their cell-genotype ratios and their clinical and neuropathological profiles. Neuropathological examination of the affected-like animals revealed intense glial activation, prominent storage body accumulation and severe neurodegeneration within all cortical brain regions, along with vision loss and decreasing intracranial volumes and cortical thicknesses consistent with ovine CLN6 disease. In contrast, intercellular communication affecting pathology was evident at both the gross and histological level in the normal-like and recovering-like chimeras, resulting in a lack of glial activation and rare storage body accumulation in only a few cells. Initial intracranial volumes of the recovering-like chimeras were below normal but progressively recovered to about normal by two years of age. All had normal cortical thicknesses, and none went blind. Extended neurogenesis was evident in the brains of all the chimeras. This study indicates that although CLN6 is a membrane bound protein, the consequent defect is not cell intrinsic. The lack of glial activation and inflammatory responses in the normal-like and recovering-like chimeras indicate that newly generated cells are borne into a microenvironment conducive to maturation and survival.
Collapse
Affiliation(s)
- Lucy Anne Barry
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Graham William Kay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nadia Lesley Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
| | - Samantha Jane Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nigel P. Jay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - David Norris Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
- * E-mail:
| |
Collapse
|
3
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
5
|
Katz ML, Buckley RM, Biegen V, O'Brien DP, Johnson GC, Warren WC, Lyons LA. Neuronal Ceroid Lipofuscinosis in a Domestic Cat Associated with a DNA Sequence Variant That Creates a Premature Stop Codon in CLN6. G3 (BETHESDA, MD.) 2020; 10:2741-2751. [PMID: 32518081 PMCID: PMC7407459 DOI: 10.1534/g3.120.401407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory and Department of Ophthalmology,
| | | | | | | | | | - Wesley C Warren
- Life Sciences Center, University of Missouri, Columbia, MO and
| | | |
Collapse
|
6
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
7
|
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs 2019; 33:315-325. [PMID: 30877620 PMCID: PMC6440934 DOI: 10.1007/s40263-019-00620-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Angela Schulz
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Udo Bartsch
- 0000 0001 2180 3484grid.13648.38Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan Storch
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, Section Biochemistry, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Dannhausen K, Möhle C, Langmann T. Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 2018; 11:dmm.033597. [PMID: 30042155 PMCID: PMC6176999 DOI: 10.1242/dmm.033597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (jNCL) is a rare but fatal inherited lysosomal storage disorder mainly affecting children. The disease is caused by mutations in the CLN3 gene that lead to the accumulation of storage material in many tissues, prominent immune responses and neuronal degeneration. One of the first symptoms is vision loss followed by motor dysfunction and mental decline. The established Cln3Δex7/8 mouse model mimics many pathological features of the human disease except the retinal phenotype, which is very mild and occurs only very late in these mice. Here, we first carefully analyzed the retinal structure and microglia responses in these animals. While prominent autofluorescent spots were present in the fundus, only a moderate reduction of retinal thickness and no prominent microgliosis was seen in young CLN3-deficient mice. We next genetically introduced a light-sensitive RPE65 variant and established a light-damage paradigm that showed a high susceptibility of young Cln3Δex7/8 mice after exposure to 10,000 lux bright light for 30 min. Under these ‘low light’ conditions, CLN3-deficient mice showed a strong retinal degeneration, microglial activation, deposition of autofluorescent material and transcriptomic changes compared to wild-type animals. Finally, we treated the light-exposed Cln3Δex7/8 animals with the immunomodulatory compound minocycline, and thereby rescued the retinal phenotype and diminished microgliosis. Our findings indicate that exposure to specific light conditions accelerates CLN3-dependent retinal degeneration, and that immunomodulation by minocycline could be a possible treatment option to delay vision loss in jNCL patients. This article has an associated First Person interview with the first author of the paper. Summary: Here, we established a light-damage paradigm to model retinal degeneration in the juvenile neuronal ceroid lipofuscinosis mouse and showed the beneficial effects of minocycline on retinal pathology.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Kim K, Kleinman HK, Lee HJ, Pahan K. Safety and potential efficacy of gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet J Rare Dis 2017. [PMID: 28623936 PMCID: PMC5474050 DOI: 10.1186/s13023-017-0663-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is a group of genetically distinct lysosomal disorders that mainly affect the central nervous system, resulting in progressive motor and cognitive decline primarily in children. Multiple distinct genes involved in the metabolism of lipids have been identified to date with various mutations in this family of diseases. There is no cure for these diseases but some new therapeutic approaches have been tested that offer more hope than the standard palliative care. Many of the therapeutic advances require invasive procedures but some progress in slowing the disease has been found and more options can be expected in the future. We also review the literature on children with disease/conditions other than NCL for the non-invasive use, safety, and tolerability of a lipid-lowering drug, gemfibrozil, as a potential treatment for NCLs. Gemfibrozil has shown efficacy in an animal model of NCL known as CLN2 (late infantile classic juvenile) and has been shown to be safe for lowering lipids in children. Among the 200 non-NCL children found in the published literature who were treated with gemfibrozil for NCL-related problems, only 3 experienced adverse events, including 2 with muscle pain and 1 with localized linear IgA bullous dermatitis. We conclude that gemfibrozil is safe for long-term use in children, causes minimal adverse events, is well tolerated, and may delay the progression of NCLs. Gemfibrozil may potentially be an alternative to more invasive therapeutic approaches currently under investigation and has the potential to be used in combination with other therapeutic approaches.
Collapse
Affiliation(s)
- Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae, South Korea
| | - Hynda K Kleinman
- Polaryx Therapeutics Inc., Paramus, NJ, USA. .,The George Washington University Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
10
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
11
|
Kinarivala N, Trippier PC. Progress in the Development of Small Molecule Therapeutics for the Treatment of Neuronal Ceroid Lipofuscinoses (NCLs). J Med Chem 2015; 59:4415-27. [PMID: 26565590 DOI: 10.1021/acs.jmedchem.5b01020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited and incurable neurodegenerative disorders primarily afflicting the pediatric population. Current treatment regimens offer only symptomatic relief and do not target the underlying cause of the disease. Although the underlying pathophysiology that drives disease progression is unknown, several small molecules have been identified with diverse mechanisms of action that provide promise for the treatment of this devastating disease. This review aims to summarize the current cellular and animal models available for the identification of potential therapeutics and presents the current state of knowledge on small molecule compounds that demonstrate in vitro and/or in vivo efficacy across the NCLs with an emphasis on targets of action.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the Batten Animal Research Network. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2279-86. [PMID: 26073432 DOI: 10.1016/j.bbadis.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
Studies on naturally occurring New Zealand and Australian ovine models of the neuronal ceroid-lipofuscinoses (Batten disease, NCLs) have greatly aided our understanding of these diseases. Close collaborations between the New Zealand groups at Lincoln University and the University of Otago, Dunedin, and a group at the University of Sydney, Australia, led to the formation of BARN, the Batten Animal Research Network. This review focusses on presentations at the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease), recent relevant background work, and previews of work in preparation for publication. Themes include CLN5 and CLN6 neuronal cell culture studies, studies on tissues from affected and control animals and whole animal in vivo studies. Topics include the effect of a CLN6 mutation on endoplasmic reticulum proteins, lysosomal function and the interactions of CLN6 with other lysosomal activities and trafficking, scoping gene-based therapies, a molecular dissection of neuroinflammation, identification of differentially expressed genes in brain tissue, an attempted therapy with an anti-inflammatory drug in vivo and work towards gene therapy in ovine models of the NCLs. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
13
|
Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep 2015; 5:10535. [PMID: 26000566 PMCID: PMC4441131 DOI: 10.1038/srep10535] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022] Open
Abstract
Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis.
Collapse
|
14
|
Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2292-300. [PMID: 25957554 DOI: 10.1016/j.bbadis.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses represent a group of severe childhood lysosomal storage diseases. With at least 13 identified variants they are the most common cause of inherited neurodegeneration in children. These diseases share common pathological characteristics including motor problems, vision loss, seizures, and cognitive decline, culminating in premature death. Currently, no form of the disease can be treated or cured, with only palliative care to minimise discomfort. This review focuses on current and potentially ground-breaking clinical trials, including small molecule, enzyme replacement, stem cell, and gene therapies, in the development of effective treatments for the various disease subtypes. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Nicole J Neverman
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Hannah L Best
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Sandra L Hofmann
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie M Hughes
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand.
| |
Collapse
|
15
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Alfonso Romero-Sandoval E, Sweitzer S. Nonneuronal central mechanisms of pain: glia and immune response. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:325-58. [PMID: 25744678 DOI: 10.1016/bs.pmbts.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of central glial cells in the mechanisms underlying pain has been intensively studied in the last two decades. Most studies on glia and pain focused on the potential detrimental role of glial cells following noxious stimulus/insults manifested as an "activation" or a "reactive" state (increase in glial marker expression and production of proinflammatory/nociceptive molecules). Therefore, "activated" or "reactive" glial cells became a target for the future generation of drugs to treat chronic pain. Several glial modulators that reduce the activation of glial cells have shown great efficacy in multiple animal (rodents mostly) models of pain (acute, subacute, chronic, inflammatory, neuropathic, surgical, etc.). These encouraging findings inspired clinical trials that have been completed in the last 5 years. Unfortunately, all clinical trials with these glial modulators have failed to demonstrate efficacy for the treatment of pain. New lines of investigation and elegant experimental designs are shedding light on alternative glial functions, which demonstrate that "glial reactivity" is not necessarily deleterious in some pathological conditions. New strategies to validate findings through our current animal models are necessary to enhance the translational value of our preclinical studies. Also, more studies using human subjects would enhance our understanding of glial cells in the context of pain. This chapter explores the available literature to objectively ponder the potential role of glial cells in human pain conditions.
Collapse
Affiliation(s)
- E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA.
| | - Sarah Sweitzer
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA
| |
Collapse
|