1
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Souayah N, Chen H, Chong ZZ, Patel T, Pahwa A, Menkes DL, Cunningham T. Novel strategy: Identifying new markers for demyelination in diabetic distal symmetrical polyneuropathy. Heliyon 2024; 10:e30419. [PMID: 38765173 PMCID: PMC11101717 DOI: 10.1016/j.heliyon.2024.e30419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Objective To develop a novel strategy for identifying acquired demyelination in diabetic distal symmetrical polyneuropathy (DSP). Background Motor nerve conduction velocity (CV) slowing in diabetic DSP exceeds expectations for pure axonal loss thus implicating superimposed acquired demyelination. Methods After establishing demyelination confidence intervals by regression analysis of nerve conduction data from chronic inflammatory demyelinating polyneuropathy (CIDP), we prospectively studied CV slowing in 90 diabetic DSP patients with and without at least one motor nerve exhibiting CV slowing (groups A and B) into the demyelination range by American Academy of Neurology (AAN) criteria respectively and 95 amyotrophic lateral sclerosis (ALS) patients. Simultaneously, secretory phospholipase A2 (sPLA2) activity was assessed in both diabetic groups and 46 healthy controls. Results No ALS patient exhibited CV slowing in more than two motor nerves based on AAN criteria or the confidence intervals. Group A demonstrated a significantly higher percentage of patients as compared to group B fulfilling the above criteria, with an additional criterion of at least one motor nerve exhibiting CV slowing in the demyelinating range and a corresponding F response in the demyelinating range by AAN criteria (70.3 % vs. 1.9 %; p < 0.0001). Urine sPLA2 activity was increased significantly in diabetic groups as compared to healthy controls (942.9 ± 978.0 vs. 591.6 ± 390.2 pmol/min/ml, p < 0.05), and in group A compared to Group B (1328.3 ± 1274.2 vs. 673.8 ± 576.9 pmol/min/ml, p < 0.01). More patients with elevated sPLA2 activity and more than 2 motor nerves with CV slowing in the AAN or the confidence intervals were identified in group A as compared to group B (35.1 % vs. 5.7 %, p < 0.001). Furthermore, 13.5 % of patients in diabetic DSP Group A, and no patients in diabetic DSP Group B, fulfilled an additional criterion of more than one motor nerve with CV slowing into the demyelinating range with its corresponding F response into the demyelinating range by AAN criteria. Conclusion A combination of regression analysis of electrodiagnostic data and a urine biological marker of systemic inflammation identifies a subgroup of diabetic DSP with superimposed acquired demyelination that may respond favorably to immunomodulatory therapy.
Collapse
Affiliation(s)
- Nizar Souayah
- New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ, 07101, USA
| | - Hongxin Chen
- New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ, 07101, USA
| | - Zhao Zhong Chong
- New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ, 07101, USA
| | - Tejas Patel
- New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ, 07101, USA
| | - Ankit Pahwa
- SMR Consulting, 407 Elmwood Avenue, Sharon Hill, PA, 19079, USA
| | - Daniel L. Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, 3555 West 13 Mile Road, Suite N120, Royal Oak, MI, 48073, USA
| | - Timothy Cunningham
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| |
Collapse
|
3
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
4
|
Karakhim SO. Kinetics of the enzyme titration process by reversible modifiers. Biochimie 2023; 214:11-26. [PMID: 37279802 DOI: 10.1016/j.biochi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
The effect of reversible modifiers on the initial rate of enzyme catalysed reactions has been investigated in a quasi-equilibrium approximation using the general modifier mechanism of Botts and Morales. It has been shown that, when investigating the dependence of the initial rate on the modifier concentration at a fixed substrate concentration, the kinetics of enzyme titration by reversible modifiers can generally be described using two kinetic constants. Just as the dependence of the initial rate on the substrate concentration (at a fixed modifier concentration) is described using two kinetic constants: the Michaelis constant Km and the limiting rate Vm. Only one constant M50 is needed to describe the kinetics of linear inhibition, and in the case of nonlinear inhibition and activation, along with M50 the constant QM is also needed. Knowing the values of the constants M50 and QM, it is possible to unambiguously determine the modification efficiency, that is, to calculate how many times the initial rate of the enzyme catalysed reaction will change when a certain modifier concentration is added to the incubation medium. The properties of these fundamental constants have been analysed in detail and the dependence of these constants on other parameters of the Botts-Morales model have been shown. Equations describing the dependence of relative reaction rates on the modifier concentration using these kinetic constants are presented. Various ways of linearising these equations for calculating the kinetic constants M50 and QM from experimental data are also presented.
Collapse
Affiliation(s)
- S O Karakhim
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine.
| |
Collapse
|
5
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
6
|
Cunningham TJ, Greenstein J, Yao L, Fischer I, Connors T. Heptamer Peptide Disassembles Native Amyloid in Human Plasma Through Heat Shock Protein 70. Rejuvenation Res 2018; 21:527-534. [PMID: 29651925 DOI: 10.1089/rej.2017.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteostasis, which includes the repair and disposal of misfolded proteins, depends, in part, on the activity of heat shock proteins (HSPs), a well-known class of chaperone molecules. When this process fails, abnormally folded proteins may accumulate in cells, tissues, and blood. These species are a hallmark of protein aggregation diseases, but also amass during aging, often in the absence of an identified clinical disorder. We report that a neuroprotective cyclic heptapeptide, CHEC-7, which has been applied systemically as a therapeutic in animal neurodegeneration models, disrupts such aggregates and inhibits amyloidogenesis when added in nanomolar concentrations to human plasma. This effect includes aggregates of amyloid beta (Aβ1-40, 1-42), prominent features of Alzheimer's disease pathology. The activity of endogenous HSP70, a recently discovered target of the peptide, is required as demonstrated by both antibody blocking and application of pifithrin-μ, an HSP70 inhibitor. CHEC-7 is the first high-affinity compound to stimulate HSP70's disaggregase activity and therefore enable this endogenous mechanism in a human systemic environment, increasing the likelihood of a convenient therapy for protein aggregate disease, including age-related failures of protein repair.
Collapse
Affiliation(s)
- Timothy J Cunningham
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Lihua Yao
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Theresa Connors
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Cunningham TJ, Greenstein JI, Loewenstern J, Degermentzidis E, Yao L. Anti-inflammatory peptide regulates the supply of heat shock protein 70 monomers: implications for aging and age-related disease. Rejuvenation Res 2016; 18:136-44. [PMID: 25485461 DOI: 10.1089/rej.2014.1620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reducing the levels of toxic protein aggregates has become a focus of therapy for disorders like Alzheimer's and Parkinson's diseases, as well as for the general deterioration of cells and tissues during aging. One approach has been an attempt to influence the production or activity of a class of reparative chaperones called heat shock proteins (HSPs), of which HSP70 is a promising candidate. Manipulation of HSP70 expression results in disposal of misfolded protein aggregates that accumulate in aging and disease models. Recently, HSP70 has been shown to bind specifically to an amino-terminal sequence of a human diffusible survival evasion peptide (DSEP), dermcidin. This sequence includes CHEC-9, an orally available anti-inflammatory and cell survival peptide. In the present study, we found that the CHEC-9 peptide also binds HSP70 in the cytosol of the cerebral cortex after oral delivery in normal rats. Western analysis of non-heat-denatured, unreduced samples suggested that peptide treatment increased the level of active HSP70 monomers from the pool of chaperone oligomers, a process that may be stimulated by potentiation of the chaperone's adenosine triphosphatase (ATPase). In these samples, a small but consistent gel shift was observed for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a multifunctional protein whose aggregation is influenced by HSP70. CHEC-9 treatment of an in vitro model of α-synuclein aggregation also results in HSP70-dependent dissolution of these aggregates. HSP70 oligomer-monomer equilibrium and its potential to control protein aggregate disease warrant increased experimental attention, especially if a peptide fragment of an endogenous human protein can influence the process.
Collapse
Affiliation(s)
- Timothy J Cunningham
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
8
|
Ong WY, Farooqui T, Kokotos G, Farooqui AA. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 2015; 6:814-31. [PMID: 25891385 DOI: 10.1021/acschemneuro.5b00073] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department
of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Tahira Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - George Kokotos
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis,
Athens 15771, Greece
| | - Akhlaq A. Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food Chem 2014; 151:141-7. [DOI: 10.1016/j.foodchem.2013.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
|
10
|
Chen S, Yao L, Cunningham TJ. Secreted phospholipase A2 involvement in neurodegeneration: differential testing of prosurvival and anti-inflammatory effects of enzyme inhibition. PLoS One 2012; 7:e39257. [PMID: 22720084 PMCID: PMC3376100 DOI: 10.1371/journal.pone.0039257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 05/22/2012] [Indexed: 11/20/2022] Open
Abstract
There is increased interest in the contribution of secreted phospholipase A2 (sPLA2) enzymes to neurodegenerative diseases. Systemic treatment with the nonapeptide CHEC-9, a broad spectrum uncompetitive inhibitor of sPLA2, has been shown previously to inhibit neuron death and aspects of the inflammatory response in several models of neurodegeneration. A persistent question in studies of sPLA2 inhibitors, as for several other anti-inflammatory and neuroprotective compounds, is whether the cell protection is direct or due to slowing of the toxic aspects of the inflammatory response. To further explore this issue, we developed assays using SY5Y (neuronal cells) and HL-60 (monocytes) cell lines and examined the effects of sPLA2 inhibition on these homogeneous cell types in vitro. We found that the peptide inhibited sPLA2 enzyme activity in both SY5Y and HL-60 cultures. This inhibition provided direct protection to SY5Y neuronal cells and their processes in response to several forms of stress including exposure to conditioned medium from HL-60 cells. In cultures of HL-60 cells, sPLA2 inhibition had no effect on survival of the cells but attenuated their differentiation into macrophages, with regard to process development, phagocytic ability, and the expression of differentiation marker CD36, as well as the secretion of proinflammatory cytokines TNF-α and IL-6. These results suggest that sPLA2 enzyme activity organizes a cascade of changes comprising both cell degeneration and inflammation, processes that could theoretically operate independently during neurodegenerative conditions. The effectiveness of sPLA2 inhibitor CHEC-9 may be due to its ability to affect both processes in isolation. Testing potential anti-inflammatory/neuroprotective compounds with these human cell lines and their conditioned media may provide a useful screening tool prior to in vivo therapeutic applications.
Collapse
Affiliation(s)
- Shuyan Chen
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lihua Yao
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Timothy J. Cunningham
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP, Miyano M, Yorita K, Sakai T, Fukui K. The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 2010; 24:1055-67. [PMID: 19329549 DOI: 10.1177/0269881109102644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
D-Amino acid oxidase (DAO) has been established to be involved in the oxidation of D-serine, an allosteric activator of the N-methyl-D-aspartate-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The effect of risperidone, a benzisoxazole derivative, atypical antischizophrenic drug, on the activity of human DAO was tested using an in-vitro oxygraph system and rat C6, stable C6 transformant cells overexpressing mouse DAO (designated as C6/DAO) and pig kidney epithelial cells (LLC-PK(1)). Risperidone has a hyperbolic mixed-type inhibition, designated as 'partial uncompetitive inhibition effect', with K(i) value of 41 microM on human DAO. Risperidone exhibited a protective effect from D-amino acid induced cell death in both C6/DAO and LLC-PK(1) cells with 10% increase in viability. These data indicate the involvement of DAO activity in D-serine metabolism and also suggest a new mechanism of action to risperidone as antischizophrenic drug.
Collapse
Affiliation(s)
- R M Abou El-Magd
- Division of Enzyme Pathophysiology, The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pedersen PJ, Adolph SK, Subramanian AK, Arouri A, Andresen TL, Mouritsen OG, Madsen R, Madsen MW, Peters GH, Clausen MH. Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release. J Med Chem 2010; 53:3782-92. [DOI: 10.1021/jm100190c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Palle J. Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 201 and 207, DK-2800 Kgs. Lyngby, Denmark
| | - Sidsel K. Adolph
- LiPlasome Pharma A/S, Technical University of Denmark, Diplomvej 378, DK-2800 Kgs. Lyngby, Denmark
| | - Arun K. Subramanian
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 201 and 207, DK-2800 Kgs. Lyngby, Denmark
| | - Ahmad Arouri
- Department of Physics and Chemistry, MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas L. Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Ole G. Mouritsen
- Department of Physics and Chemistry, MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 201 and 207, DK-2800 Kgs. Lyngby, Denmark
| | - Mogens W. Madsen
- LiPlasome Pharma A/S, Technical University of Denmark, Diplomvej 378, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 201 and 207, DK-2800 Kgs. Lyngby, Denmark
| | - Mads H. Clausen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 201 and 207, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Goracci G, Ferrini M, Nardicchi V. Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions. Mol Neurobiol 2010; 41:274-89. [DOI: 10.1007/s12035-010-8108-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
|
14
|
Cunningham TJ, Yao L, Lucena A. Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines' unexpected therapeutic properties. JOURNAL OF INFLAMMATION-LONDON 2008; 5:17. [PMID: 18945345 PMCID: PMC2580763 DOI: 10.1186/1476-9255-5-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/22/2008] [Indexed: 11/24/2022]
Abstract
Background Lysophosphatidylcholines (lysoPCs) are products of phospholipase A2 (PLA2) enzyme activity, and like the enzyme, have a direct role in toxic inflammatory responses in variety of organ systems. Paradoxically, reduced plasma lysoPC levels have been noted in sepsis patients and systemic treatment with lysoPCs is therapeutic in rodent models of sepsis and ischemia. These observations suggest that elevation of plasma levels of these lipids can actually help to relieve serious inflammatory conditions. We demonstrate that specific lysoPCs act as uncompetitive product inhibitors of plasma secreted PLA2 enzymes (sPLA2s), especially under conditions of elevated enzyme activity, thus providing a feedback mechanism for the observed anti-inflammatory effects of these compounds. Methods Thin layer chromatography and mass spectroscopy were used to estimate total lysoPC concentration and the relative contributions of different lysoPC species in rat plasma samples. Kinetic studies of sPLA2 enzyme activity were conducted on these samples ex vivo and on purified group IA sPLA2 in vitro after addition of specific lysoPC species to the reaction mixture. Enzyme activity was also measured in plasma samples of rats injected with these same lysoPCs. Results Palmitoyl (16:0), stearoyl (18:0) are the most abundant lysoPCs in rat plasma consistent with other reports. Kinetic studies demonstrated that both were uncompetitive inhibitors of plasma sPLA2 enzyme activity. In vitro experiments with group IA sPLA2 confirmed the inhibition and the kinetic properties of these lysoPC species. Decanoyl lysoPC (10:0), which was not detected in plasma, did not inhibit enzyme activity in vitro. LysoPC injections into normal rats resulted in "buffering" of plasma sPLA2 activity in a narrow low range, consistent with the activity-dependent inhibition suggested by the ex vivo and in vitro experiments. Conclusion The results may explain the efficacy of lysoPC therapy during periods of elevated inflammatory activity and further highlight the utility uncompetitive enzyme inhibitors. In this case, the inhibitor is a product of the enzyme reaction, and therefore represents an example of activity-driven feedback inhibition.
Collapse
Affiliation(s)
- Timothy J Cunningham
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
15
|
Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16. [PMID: 17561938 DOI: 10.1111/j.1471-4159.2007.04670.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
16
|
Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI. Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroinflammation 2006; 3:26. [PMID: 16965627 PMCID: PMC1592473 DOI: 10.1186/1742-2094-3-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 09/11/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is increased interest in the contribution of the innate immune system to multiple sclerosis (MS), including the activity of acute inflammatory mediators. The purpose of this study was to test the involvement of systemic secreted phospholipase A2 (sPLA2) enzymes in experimental autoimmune encephalomyelitis (EAE), an MS model, and to determine if enzyme activity is elevated in MS patients. METHODS A non-invasive urinary assay was developed in order to monitor enzymatically active sPLA2 levels in Dark Agouti rats after induction of EAE. Some Rats were treated with nonapeptide CHEC-9, an uncompetitive sPLA2 enzyme inhibitor, during the initial rise in urinary enzyme levels. Body weight and clinical EAE score were measured for 18 days post immunization (PI), after which the rats were sacrificed for H&E and myelin staining, and for ED-1 immunocytochemistry, the latter to quantify macrophages and activated microglia. The urinary sPLA2 assay was also applied to un-timed samples collected from a cross section of 44 MS patients and 14 healthy controls. RESULTS Mean levels of enzymatically active sPLA2 in the urine increased following immunization and peaked between days 8-10 PI which was just prior to the onset of EAE symptoms. At this time, a transient attenuation of activity was detected in the urine of CHEC-9 treated rats consistent with the activity-dependent properties of the inhibitor. The peptide also reduced or abolished EAE symptoms compared to vehicle-injected controls. Histopathological changes in the spinal cords of the EAE rats correlated generally with clinical score including a significant reduction in ED-1+ cells after peptide treatment. Multiple Sclerosis patients also showed elevations in sPLA2 enzyme activity. Mean levels of sPLA2 were increased 6-fold in the urine of patients with active disease and 4-fold for patients in remission, regardless of immunomodulating therapy. CONCLUSION The results suggest that sPLA2 enzymes, traditionally thought to be part the acute phase inflammatory response, are therapeutic targets for MS.
Collapse
Affiliation(s)
- Timothy J Cunningham
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Lihua Yao
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Michelle Oetinger
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Laura Cort
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|