1
|
Zhao W, Yang J, Wu J, Cai G, Zhang Y, Haltom J, Su W, Dong MJ, Chen S, Wu J, Zhou Z, Gu X. CanDriS: posterior profiling of cancer-driving sites based on two-component evolutionary model. Brief Bioinform 2021; 22:6238585. [PMID: 33876217 DOI: 10.1093/bib/bbab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Current cancer genomics databases have accumulated millions of somatic mutations that remain to be further explored. Due to the over-excess mutations unrelated to cancer, the great challenge is to identify somatic mutations that are cancer-driven. Under the notion that carcinogenesis is a form of somatic-cell evolution, we developed a two-component mixture model: while the ground component corresponds to passenger mutations, the rapidly evolving component corresponds to driver mutations. Then, we implemented an empirical Bayesian procedure to calculate the posterior probability of a site being cancer-driven. Based on these, we developed a software CanDriS (Cancer Driver Sites) to profile the potential cancer-driving sites for thousands of tumor samples from the Cancer Genome Atlas and International Cancer Genome Consortium across tumor types and pan-cancer level. As a result, we identified that approximately 1% of the sites have posterior probabilities larger than 0.90 and listed potential cancer-wide and cancer-specific driver mutations. By comprehensively profiling all potential cancer-driving sites, CanDriS greatly enhances our ability to refine our knowledge of the genetic basis of cancer and might guide clinical medication in the upcoming era of precision medicine. The results were displayed in a database CandrisDB (http://biopharm.zju.edu.cn/candrisdb/).
Collapse
Affiliation(s)
- Wenyi Zhao
- College of Pharmaceutical Sciences & College of Computer Science and Technology, Zhejiang University, China
| | - Jingwen Yang
- MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, China
| | - Jingcheng Wu
- College of Pharmaceutical Sciences, Zhejiang University, China
| | - Guoxing Cai
- College of Pharmaceutical Sciences, Zhejiang University, China
| | - Yao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, China
| | - Jeffrey Haltom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 12 Iowa 50011, USA
| | - Weijia Su
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 12 Iowa 50011, USA
| | - Michael J Dong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 12 Iowa 50011, USA
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, China
| | - Jian Wu
- College of Computer Science and Technology & School of Medicine, Zhejiang University, China
| | - Zhan Zhou
- College of Pharmaceutical Sciences, Innovation Institute for Artificial Intelligence in Medicine, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 12 Iowa 50011, USA
| |
Collapse
|
2
|
Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat Commun 2020; 11:5338. [PMID: 33087703 PMCID: PMC7577990 DOI: 10.1038/s41467-020-19142-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor heterogeneity is a major cause of therapeutic resistance. Immunotherapy may exploit alternative vulnerabilities of drug-resistant cells, where tumor-specific human leukocyte antigen (HLA) peptide ligands are promising leads to invoke targeted anti-tumor responses. Here, we investigate the variability in HLA class I peptide presentation between different clonal cells of the same colorectal cancer patient, using an organoid system. While clone-specific differences in HLA peptide presentation were observed, broad inter-clone variability was even more prevalent (15–25%). By coupling organoid proteomics and HLA peptide ligandomics, we also found that tumor-specific ligands from DNA damage control and tumor suppressor source proteins were prominently presented by tumor cells, coinciding likely with the silencing of such cytoprotective functions. Collectively, these data illustrate the heterogeneous HLA peptide presentation landscape even within one individual, and hint that a multi-peptide vaccination approach against highly conserved tumor suppressors may be a viable option in patients with low tumor-mutational burden. Immunotherapy may exploit alternative vulnerabilities of drug resistant cells. Here, the authors show that the HLA peptide presentation landscape is heterogeneous even within one individual, hinting that a multi-peptide vaccination approach against highly conserved tumor suppressors may be needed.
Collapse
|
3
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Nunes SC. Tumor Microenvironment - Selective Pressures Boosting Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:35-49. [PMID: 32130692 DOI: 10.1007/978-3-030-34025-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 2018, 9.6 million deaths from cancer were estimated, being this disease the second leading cause of death worldwide. Notwithstanding all the efforts developed in prevention, diagnosis and new treatment approaches, chemoresistance seems to be inevitable, leading to cancer progression, recurrence and affecting the outcome of the disease. As more and more evidence support that cancer is an evolutionary and ecological process, this concept is rarely applied in the clinical context. In fact, cancer cells emerge and progress within an ecological niche - the tumor microenvironment - that is shared with several other cell types and that is continuously changing. Therefore, the tumor microenvironment imposes several selective pressures on cancer cells such as acidosis, hypoxia, competition for space and resources, immune predation and anti-cancer therapies, that cancer cells must be able to adapt to or will face extinction.In here, the role of the tumor microenvironment selective pressures on cancer progression will be discussed, as well as the targeting of its features/components as strategies to fight cancer.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
5
|
Sastre D, Baiochi J, de Souza Lima IM, Canto de Souza F, Corveloni AC, Thomé CH, Faça VM, Schiavinato JLDS, Covas DT, Panepucci RA. Focused screening reveals functional effects of microRNAs differentially expressed in colorectal cancer. BMC Cancer 2019; 19:1239. [PMID: 31864341 PMCID: PMC6925883 DOI: 10.1186/s12885-019-6468-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still a leading cause of death worldwide. Recent studies have pointed to an important role of microRNAs in carcinogenesis. Several microRNAs are described as aberrantly expressed in CRC tissues and in the serum of patients. However, functional outcomes of microRNA aberrant expression still need to be explored at the cellular level. Here, we aimed to investigate the effects of microRNAs aberrantly expressed in CRC samples in the proliferation and cell death of a CRC cell line. METHODS We transfected 31 microRNA mimics into HCT116 cells. Total number of live propidium iodide negative (PI-) and dead (PI+) cells were measured 4 days post-transfection by using a high content screening (HCS) approach. HCS was further used to evaluate apoptosis (via Annexin V and PI staining), and to discern between intrinsic and extrinsic apoptotic pathways, by detecting cleaved Caspase 9 and 8, respectively. To reveal mRNA targets and potentially involved mechanisms, we performed microarray gene expression and functional pathway enrichment analysis. Quantitative PCR and western blot were used to validate potential mRNA targets. RESULTS Twenty microRNAs altered the proliferation of HCT116 cells in comparison to control. miR-22-3p, miR-24-3p, and miR-101-3p significantly repressed cell proliferation and induced cell death. Interestingly, all anti-proliferative microRNAs in our study had been previously described as poorly expressed in the CRC samples. Predicted miR-101-3p targets that were also downregulated by in our microarray were enriched for genes associated with Wnt and cancer pathways, including MCL-1, a member of the BCL-2 family, involved in apoptosis. Interestingly, miR-101-3p preferentially downregulated the long anti-apoptotic MCL-1 L isoform, and reduced cell survival specifically by activating the intrinsic apoptosis pathway. Moreover, miR-101-3p also downregulated IL6ST, STAT3A/B, and MYC mRNA levels, genes associated with stemness properties of CRC cells. CONCLUSIONS microRNAs upregulated in CRC tend to induce proliferation in vitro, whereas microRNAs poorly expressed in CRC halt proliferation and induce cell death. We provide novel evidence linking preferential inhibition of the anti-apoptotic MCL-1 L isoform by miR-101-3p and consequent activation of the intrinsic apoptotic pathway as potential mechanisms for its antitumoral activity, likely due to the inhibition of the IL-6/JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Danuta Sastre
- Laboratory of Human and Medical Genetics, Federal University of Pará, Rua Augusto Corrêa, 01. Guamá., Belém, Pará CEP 66075-110 Brazil
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - João Baiochi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Ildercilio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Felipe Canto de Souza
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Carolina Hassib Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| |
Collapse
|
6
|
Pyatnitskiy MA, Karpov DS, Moshkovskii SA. [Searching for essential genes in cancer genomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:303-314. [PMID: 30135277 DOI: 10.18097/pbmc20186404303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The concept of essential genes, whose loss of functionality leads to cell death, is one of the fundamental concepts of genetics and is important for fundamental and applied research. This field is particularly promising in relation to oncology, since the search for genetic vulnerabilities of cancer cells allows us to identify new potential targets for antitumor therapy. The modern biotechnology capacities allow carrying out large-scale projects for sequencing somatic mutations in tumors, as well as directly interfering the genetic apparatus of cancer cells. They provided accumulation of a considerable body of knowledge about genetic variants and corresponding phenotypic manifestations in tumors. In the near future this knowledge will find application in clinical practice. This review describes the main experimental and computational approaches to the search for essential genes, concentrating on the application of these methods in the field of molecular oncology.
Collapse
Affiliation(s)
- M A Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow, Russia; Higher School of Economics, Moscow, Russia
| | - D S Karpov
- Institute of Biomedical Chemistry, Moscow, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
7
|
Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer MH. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol 2018; 19:67. [PMID: 29855388 PMCID: PMC5984361 DOI: 10.1186/s13059-018-1434-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Natural selection shapes cancer genomes. Previous studies used signatures of positive selection to identify genes driving malignant transformation. However, the contribution of negative selection against somatic mutations that affect essential tumor functions or specific domains remains a controversial topic. Results Here, we analyze 7546 individual exomes from 26 tumor types from TCGA data to explore the portion of the cancer exome under negative selection. Although we find most of the genes neutrally evolving in a pan-cancer framework, we identify essential cancer genes and immune-exposed protein regions under significant negative selection. Moreover, our simulations suggest that the amount of negative selection is underestimated. We therefore choose an empirical approach to identify genes, functions, and protein regions under negative selection. We find that expression and mutation status of negatively selected genes is indicative of patient survival. Processes that are most strongly conserved are those that play fundamental cellular roles such as protein synthesis, glucose metabolism, and molecular transport. Intriguingly, we observe strong signals of selection in the immunopeptidome and proteins controlling peptide exposition, highlighting the importance of immune surveillance evasion. Additionally, tumor type-specific immune activity correlates with the strength of negative selection on human epitopes. Conclusions In summary, our results show that negative selection is a hallmark of cell essentiality and immune response in cancer. The functional domains identified could be exploited therapeutically, ultimately allowing for the development of novel cancer treatments. Electronic supplementary material The online version of this article (10.1186/s13059-018-1434-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Zapata
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Oriol Pich
- Evolutionary Genomics Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Luis Serrano
- Design of Biological Systems Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Fyodor A Kondrashov
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Stephan Ossowski
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Martin H Schaefer
- Design of Biological Systems Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
8
|
Zhou Z, Zou Y, Liu G, Zhou J, Wu J, Zhao S, Su Z, Gu X. Mutation-profile-based methods for understanding selection forces in cancer somatic mutations: a comparative analysis. Oncotarget 2017; 8:58835-58846. [PMID: 28938601 PMCID: PMC5601697 DOI: 10.18632/oncotarget.19371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes (CN /CS ) and normal populations (pN /pS ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased CN /CS values of human genes in cancer genomes compared with the pN /pS values in human populations. The CN /CS values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhan Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yangyun Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangbiao Liu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingqi Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingcheng Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, USA.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Cancer evolution is associated with pervasive positive selection on globally expressed genes. PLoS Genet 2014; 10:e1004239. [PMID: 24603726 PMCID: PMC3945297 DOI: 10.1371/journal.pgen.1004239] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
Cancer is an evolutionary process in which cells acquire new transformative, proliferative and metastatic capabilities. A full understanding of cancer requires learning the dynamics of the cancer evolutionary process. We present here a large-scale analysis of the dynamics of this evolutionary process within tumors, with a focus on breast cancer. We show that the cancer evolutionary process differs greatly from organismal (germline) evolution. Organismal evolution is dominated by purifying selection (that removes mutations that are harmful to fitness). In contrast, in the cancer evolutionary process the dominance of purifying selection is much reduced, allowing for a much easier detection of the signals of positive selection (adaptation). We further show that, as a group, genes that are globally expressed across human tissues show a very strong signal of positive selection within tumors. Indeed, known cancer genes are enriched for global expression patterns. Yet, positive selection is prevalent even on globally expressed genes that have not yet been associated with cancer, suggesting that globally expressed genes are enriched for yet undiscovered cancer related functions. We find that the increased positive selection on globally expressed genes within tumors is not due to their expression in the tissue relevant to the cancer. Rather, such increased adaptation is likely due to globally expressed genes being enriched in important housekeeping and essential functions. Thus, our results suggest that tumor adaptation is most often mediated through somatic changes to those genes that are important for the most basic cellular functions. Together, our analysis reveals the uniqueness of the cancer evolutionary process and the particular importance of globally expressed genes in driving cancer initiation and progression.
Collapse
|