1
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
2
|
Papin L, Lehmann M, Lagisquet J, Maarifi G, Robert-Hebmann V, Mariller C, Guerardel Y, Espert L, Haucke V, Blanchet FP. The Autophagy Nucleation Factor ATG9 Forms Nanoclusters with the HIV-1 Receptor DC-SIGN and Regulates Early Antiviral Autophagy in Human Dendritic Cells. Int J Mol Sci 2023; 24:ijms24109008. [PMID: 37240354 DOI: 10.3390/ijms24109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.
Collapse
Affiliation(s)
- Laure Papin
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Justine Lagisquet
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Véronique Robert-Hebmann
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Christophe Mariller
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
3
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
4
|
Maarifi G, Lagisquet J, Hertel Q, Bonaventure B, Chamontin C, Fuchs K, Moncorgé O, Tauziet M, Mombled M, Papin L, Molès JP, Bodet C, Lévèque N, Gross A, Arhel N, Nisole S, Van de Perre P, Goujon C, Blanchet FP. Alarmin S100A9 restricts retroviral infection by limiting reverse transcription in human dendritic cells. EMBO J 2021; 40:e106540. [PMID: 34121210 DOI: 10.15252/embj.2020106540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.
Collapse
Affiliation(s)
- Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Justine Lagisquet
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Hertel
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Boris Bonaventure
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Kyra Fuchs
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marine Tauziet
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Margaux Mombled
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Laure Papin
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévèque
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Arhel
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Identification of Host Trafficking Genes Required for HIV-1 Virological Synapse Formation in Dendritic Cells. J Virol 2020; 94:JVI.01597-19. [PMID: 32075937 PMCID: PMC7163131 DOI: 10.1128/jvi.01597-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo. Dendritic cells (DCs) are one of the earliest targets of HIV-1 infection acting as a “Trojan horse,” concealing the virus from the innate immune system and delivering it to T cells via virological synapses (VS). To explicate how the virus is trafficked through the cell to the VS and evades degradation, a high-throughput small interfering RNA screen targeting membrane trafficking proteins was performed in monocyte-derived DCs. We identified several proteins including BIN-1 and RAB7L1 that share common roles in transport from endosomal compartments. Depletion of target proteins resulted in an accumulation of virus in intracellular compartments and significantly reduced viral trans-infection via the VS. By targeting endocytic trafficking and retromer recycling to the plasma membrane, we were able to reduce the virus’s ability to accumulate at budding microdomains and the VS. Thus, we identify key genes involved in a pathway within DCs that is exploited by HIV-1 to traffic to the VS. IMPORTANCE The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo.
Collapse
|
6
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
7
|
Zotova AA, Atemasova AA, Filatov AV, Mazurov DV. HIV Restriction Factors and Their Ambiguous Role during Infection. Mol Biol 2019. [DOI: 10.1134/s0026893319020171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zotova A, Atemasova A, Pichugin A, Filatov A, Mazurov D. Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection. Viruses 2019; 11:v11050390. [PMID: 31027334 PMCID: PMC6563509 DOI: 10.3390/v11050390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells. Comparative analysis of HIV-1 replication in two cell systems showed that, irrespective of transmission way, accessory proteins were generally less required for virus replication in 293T/CD4/X4 cells than in Jurkat-to-Raji/CD4 cell cocultures. This is consistent with a well-established fact that lymphoid cells express a broad spectrum of restriction factors, while nonlymphoid cells are rather limited in this regard. Remarkably, Vpu deletion reduced the level of cell-free infection, but enhanced the level of cell coculture infection and increased the fraction of multiply infected cells. Nef deficiency did not influence or moderately reduced HIV-1 infection in nonlymphoid and lymphoid cell cocultures, respectively, but strongly affected cell-free infection. Knockout of BST2-a Vpu antagonizing restriction factor-in Jurkat producer cells abolished the enhanced replication of HIV-1 ΔVpu in cell coculture and prevented the formation of viral clusters on cell surface. Thus, BST2-tethered viral particles mediated cell coculture infection more efficiently and at a higher level of multiplicity than diffusely distributed virions. In conclusion, our results demonstrate that the mode of transmission may determine the degree of accessory protein requirements during HIV-1 infection.
Collapse
Affiliation(s)
- Anastasia Zotova
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia Atemasova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey Pichugin
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Alexander Filatov
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Dmitriy Mazurov
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| |
Collapse
|
9
|
Shimauchi T, Caucheteux S, Finsterbusch K, Turpin J, Blanchet F, Ladell K, Triantafilou K, Czubala M, Tatsuno K, Easter T, Ahmed Z, Bayliss R, Hakobyan S, Price DA, Tokura Y, Piguet V. Dendritic Cells Promote the Spread of Human T-Cell Leukemia Virus Type 1 via Bidirectional Interactions with CD4 + T Cells. J Invest Dermatol 2018; 139:157-166. [PMID: 30048652 DOI: 10.1016/j.jid.2018.06.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) propagates within and between individuals via cell-to-cell transmission, and primary infection typically occurs across juxtaposed mucosal surfaces during breastfeeding or sexual intercourse. It is therefore likely that dendritic cells (DCs) are among the first potential targets for HTLV-1. However, it remains unclear how DCs contribute to virus transmission and dissemination in the early stages of infection. We show that an HTLV-1-infected cell line (MT-2) and naturally infected CD4+ T cells transfer p19+ viral particles to the surface of allogeneic DCs via cell-to-cell contacts. Similarly organized cell-to-cell contacts also facilitate DC-mediated transfer of HTLV-1 to autologous CD4+ T cells. These findings shed light on the cellular structures involved in anterograde and retrograde transmission and suggest a key role for DCs in the natural history and pathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Takatoshi Shimauchi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK; Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Stephan Caucheteux
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katja Finsterbusch
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jocelyn Turpin
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Fabien Blanchet
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kathy Triantafilou
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Magdalena Czubala
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kazuki Tatsuno
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tammy Easter
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Zahra Ahmed
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rebecca Bayliss
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Svetlana Hakobyan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Vincent Piguet
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK; Division of Dermatology, Women's College Hospital, Toronto, Canada; Division of Dermatology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
10
|
Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB, Spearman P. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog 2017; 13:e1006181. [PMID: 28129379 PMCID: PMC5298340 DOI: 10.1371/journal.ppat.1006181] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophage, but can be reproduced through the exogenous addition of non-infectious virus-like particles or infectious virions to macrophage cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages were readily targeted by the addition of ganglioside-containing virus-like particles to the extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides from viral particles prevented particle uptake into the VCC and resulted in substantial reductions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC formation was required for efficient trans-infection of autologous T cells. Our results help to define the nature of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery, and that this compartment can readily transmit virus to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs. T lymphocytes and macrophages are the two major cell types involved in HIV replication and transmission events. When a T cell is infected, virus particles assemble and bud from the plasma membrane of the cell. In contrast, infected macrophages develop an intracellular collection of viruses termed the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we show that VCC formation does not actually require infection of the macrophage, but can be reproduced through the addition of virus-like particles or infectious virions to macrophages. HIV-1 particles were captured by the cell surface carbohydrate-binding protein Siglec-1, followed by co-migration of Siglec-1 and captured viral particles to the VCC. Depletion of Siglec-1 from the macrophage prevented VCC formation, and inhibited the ability of infected macrophages to transmit HIV to T cells. Our results help to define the origin of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Jason E. Hammonds
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Neal Beeman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lingmei Ding
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sarah Takushi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwanth C. Francis
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jaang-Jiun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Aravantinou M, Frank I, Hallor M, Singer R, Tharinger H, Kenney J, Gettie A, Grasperge B, Blanchard J, Salazar A, Piatak M, Lifson JD, Robbiani M, Derby N. PolyICLC Exerts Pro- and Anti-HIV Effects on the DC-T Cell Milieu In Vitro and In Vivo. PLoS One 2016; 11:e0161730. [PMID: 27603520 PMCID: PMC5014349 DOI: 10.1371/journal.pone.0161730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antiviral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes will inform HIV prevention and treatment strategies. The long double-stranded RNA (dsRNA) viral mimic, polyinosinic polycytidylic acid (polyIC, PIC) potently stimulates DCs to focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses in vivo. Stabilized polyICLC (PICLC) is being developed for vaccine adjuvant applications in humans, making it critical to understand how mDC sensing of PICLC influences HIV infection. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC (vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended this work to in vivo macaque rectal transmission studies by administering PICLC with or before rectal SIVmac239 (SIVwt) or SIVmac239ΔNef (SIVΔNef) challenge. Like PIC, PICLC activated DCs and T cells, increased expression of α4β7 and CD169, and induced type I IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differentially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly, this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVΔNef-infected animals, SIVΔNef viremia was higher, in line with the importance of DC and T cell activation in SIVΔNef replication. In the right combination anti-HIV strategy, PICLC has the potential to limit HIV infection and boost HIV immunity.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Magnus Hallor
- Center for Biomedical Research, Population Council, New York, NY, United States of America
- Linköping University, Linköping, Sweden
| | - Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| |
Collapse
|
12
|
Czubala MA, Finsterbusch K, Ivory MO, Mitchell JP, Ahmed Z, Shimauchi T, Karoo ROS, Coulman SA, Gateley C, Birchall JC, Blanchet FP, Piguet V. TGFβ Induces a SAMHD1-Independent Post-Entry Restriction to HIV-1 Infection of Human Epithelial Langerhans Cells. J Invest Dermatol 2016; 136:1981-1989. [PMID: 27375111 DOI: 10.1016/j.jid.2016.05.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Sterile alpha motif (SAM) and histidine-aspartic (HD) domains protein 1 (SAMHD1) was previously identified as a critical post-entry restriction factor to HIV-1 infection in myeloid dendritic cells. Here we show that SAMHD1 is also expressed in epidermis-isolated Langerhans cells (LC), but degradation of SAMHD1 does not rescue HIV-1 or vesicular stomatitis virus G-pseudotyped lentivectors infection in LC. Strikingly, using Langerhans cells model systems (mutz-3-derived LC, monocyte-derived LC [MDLC], and freshly isolated epidermal LC), we characterize previously unreported post-entry restriction activity to HIV-1 in these cells, which acts at HIV-1 reverse transcription, but remains independent of restriction factors SAMHD1 and myxovirus resistance 2 (MX2). We demonstrate that transforming growth factor-β signaling confers this potent HIV-1 restriction in MDLC during their differentiation and blocking of mothers against decapentaplegic homolog 2 (SMAD2) signaling in MDLC restores cells' infectivity. Interestingly, maturation of MDLC with a toll-like receptor 2 agonist or transforming growth factor-α significantly increases cells' susceptibility to HIV-1 infection, which may explain why HIV-1 acquisition is increased during coinfection with sexually transmitted infections. In conclusion, we report a SAMHD1-independent post-entry restriction in MDLC and LC isolated from epidermis, which inhibits HIV-1 replication. A better understanding of HIV-1 restriction and propagation from LC to CD4(+) T cells may help in the development of new microbicides or vaccines to curb HIV-1 infection at its earliest stages during mucosal transmission.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Katja Finsterbusch
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Matthew O Ivory
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - J Paul Mitchell
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zahra Ahmed
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Sion A Coulman
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Christopher Gateley
- Aneurin Bevan University Health Board Royal Gwent Hospital, Newport NP20 2UB, UK
| | - James C Birchall
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Fabien P Blanchet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Vincent Piguet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
13
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
14
|
Donninelli G, Gessani S, Del Cornò M. Interplay between HIV-1 and Toll-like receptors in human myeloid cells: friend or foe in HIV-1 pathogenesis? J Leukoc Biol 2015; 99:97-105. [PMID: 26307548 DOI: 10.1189/jlb.4vmr0415-160r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
The Toll-like receptors are the first line of the host response to pathogens, representing an essential component of the innate and adaptive immune response. They recognize different pathogens and trigger responses directed at eliminating the invader and at developing immunologic long-term memory, ultimately affecting viral pathogenesis. In viral infections, sensing of nucleic acids and/or viral structural proteins generally induces a protective immune response. Thus, it is not surprising that many viruses have developed strategies to evade or counteract signaling through the Toll-like receptor pathways, to survive the host defense machinery and ensure propagation. Thus, Toll-like receptor engagement can also be part of viral pathogenic mechanisms. Evidence for a direct interaction of Toll-like receptors with human immunodeficiency virus type 1 (HIV-1) structures has started to be achieved, and alterations of their expression and function have been described in HIV-1-positive subjects. Furthermore, Toll-like receptor triggering by bacterial and viral ligands have been described to modulate HIV-1 replication and host response, leading to protective or detrimental effects. This review covers major advances in the field of HIV-1 interplay with Toll-like receptors, focusing on human myeloid cells (e.g., monocytes/macrophages and dendritic cells). The role of this interaction in the dysregulation of myeloid cell function and in dictating aspects of the multifaceted pathogenesis of acquired immunodeficiency syndrome will be discussed.
Collapse
Affiliation(s)
- Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Lv M, Zhang B, Shi Y, Han Z, Zhang Y, Zhou Y, Zhang W, Niu J, Yu XF. Identification of BST-2/tetherin-induced hepatitis B virus restriction and hepatocyte-specific BST-2 inactivation. Sci Rep 2015; 5:11736. [PMID: 26119070 PMCID: PMC4484258 DOI: 10.1038/srep11736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022] Open
Abstract
BST-2/tetherin is an interferon-inducible antiviral protein that blocks the release of various enveloped viruses, including HIV-1. Hepatitis B virus (HBV), a major cause of liver disease, belongs to the Hepadnaviridae family of enveloped DNA viruses. Whether BST-2 regulates HBV production is largely unknown. In this report, we have demonstrated that HBV particle release is modulated by BST-2 in a cell type-dependent fashion. In HEK293T cells, ectopically expressed or interferon-induced BST-2 strongly inhibited HBV release. BST-2 co-localized with HBV surface protein at multivesicular bodies (MVBs) and physically interacted with HBV particles. However, exogenous BST-2-induced HBV restriction was weak in Huh-7 hepatoma cells, and the interferon-induced anti-HBV effect was independent of BST-2 induction in hepatic L02 cells. Notably, HBV could promote HIV-1 ΔVpu virus release from BST-2-positive HepG2 hepatoma cells but not HeLa cells, whereas Vpu failed to efficiently inhibit BST-2-induced HBV restriction. HBx exhibited an enhanced interaction and co-localization with BST-2 in hepatocytes. These observations indicate that BST-2 restricts HBV production at intracellular MVBs but is inactivated by HBV through a novel mechanism requiring hepatocyte-specific cellular co-factors or a hepatocyte-specific environment. Further understanding of BST-2-induced HBV restriction may provide new therapeutic targets for future HBV treatments.
Collapse
Affiliation(s)
- Mingyu Lv
- 1] Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China [2] Department of Hepatology, First Hospital of Jilin University, Changchun, P. R. China
| | - Biao Zhang
- 1] Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China [2] School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Ying Shi
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China
| | - Zhu Han
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China
| | - Yan Zhang
- School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun, P. R. China
| | - Xiao-Fang Yu
- 1] Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, P. R. China [2] Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to describe the alterations that HIV-1 induces in antigen-presenting cells (APCs), in vitro, ex vivo and in vivo. RECENT FINDINGS HIV-1 disarms several arms of the immune system including APCs. We summarize here recent findings on the impact of the virus on APC. SUMMARY HIV-1 can invade APC and overall reduce their capacity to present antigens effectively, mostly by reducing their numbers and inducing permanent hyperactivation. This occurs via a combination of alterations; however, the host can counteract, at least in part, some of these defects via restriction factors, autophagy, the production of type I interferon, antiviral cytokines, among others. However, these specific mechanisms of viral evasion from APCs' control lead to a chronic hyperactivation of the immune system implicated in AIDS-related and non-AIDS related pathogenesis. Unfortunately, the current regimens of antiretroviral therapy are unable to dampen sufficiently APC-driven viral-induced immune hyperactivation. Understanding how HIV alters APC will help to tune appropriately both intrinsic immunity and innate immunity, as well as achieve efficient antigen presentation to the adaptive immune system, without inducing a detrimental pervasive hyperactivation of the immune system.
Collapse
|
17
|
Akiyama H, Ramirez NGP, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog 2015; 11:e1004751. [PMID: 25760631 PMCID: PMC4356592 DOI: 10.1371/journal.ppat.1004751] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/17/2015] [Indexed: 01/12/2023] Open
Abstract
Myeloid dendritic cells (DCs) can capture HIV-1 via the receptor CD169/Siglec-1 that binds to the ganglioside, GM3, in the virus particle membrane. In turn, HIV-1 particles captured by CD169, an I-type lectin, whose expression on DCs is enhanced upon maturation with LPS, are protected from degradation in CD169+ virus-containing compartments (VCCs) and disseminated to CD4+ T cells, a mechanism of DC-mediated HIV-1 trans-infection. In this study, we describe the mechanism of VCC formation and its role in immune evasion mechanisms of HIV-1. We find HIV-1-induced formation of VCCs is restricted to myeloid cells, and that the cytoplasmic tail of CD169 is dispensable for HIV-1 trafficking and retention within VCCs and subsequent trans-infection to CD4+ T cells. Interestingly, introduction of a di-aromatic endocytic motif in the cytoplasmic tail of CD169 that results in endocytosis of HIV-1 particles, suppressed CD169-mediated HIV-1 trans-infection. Furthermore, super-resolution microscopy revealed close association of CD169 and HIV-1 particles in surface-accessible but deep plasma membrane invaginations. Intriguingly, HIV-1 particles in deep VCCs were inefficiently accessed by anti-gp120 broadly neutralizing antibodies, VRC01 and NIH45-46 G54W, and thus were less susceptible to neutralization. Our study suggests that HIV-1 capture by CD169 can provide virus evasion from both innate (phagocytosis) and adaptive immune responses. Dendritic cells (DCs) are professional antigen presenting cells, and their sentinel roles are important to elicit a potent antiviral immunity. However, HIV-1 has exploited DCs to spread infection by several mechanisms. One such mechanism is the DC-mediated trans-infection pathway, whereby DCs transmit captured virus to CD4+ T cells. We have recently identified the type I interferon (IFN-I) inducible protein, CD169, as a receptor on DCs which mediates HIV-1 capture and trans-infection. We have also demonstrated extensive co-localization of HIV-1 with CD169 within peripheral non-lysosomal compartments in DCs, although the mechanism and biological importance of the compartment formation remain unclear. Here in this study, we report that a myeloid cell specific co-factor interacts with CD169 following virus capture leading to compartment formation. This co-factor is induced in DCs by an IFN-I-inducing TLR ligand LPS, but not by IFN-I itself. Though the CD169+ HIV-1 containing compartments are surface-accessible, these compartments have considerable depth and are connected to the surface, such that captured virus particles localized within these unique structures are protected from detection by anti-gp120 broadly neutralizing antibodies. Our study suggests that CD169–HIV-1 interaction provides an evasion mechanism from degradation by phagocytosis and neutralization by anti-viral humoral responses.
Collapse
Affiliation(s)
- Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nora-Guadalupe Pina Ramirez
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Manasa V. Gudheti
- Bruker Nano Surfaces, Salt Lake City, Utah, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 2014; 135:1225-1233. [PMID: 25407434 DOI: 10.1038/jid.2014.490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/25/2014] [Accepted: 09/27/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections.
Collapse
|
19
|
Shimauchi T, Piguet V. DC-T cell virological synapses and the skin: novel perspectives in dermatology. Exp Dermatol 2014; 24:1-4. [PMID: 25039899 DOI: 10.1111/exd.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 01/13/2023]
Abstract
Virological synapses (VS) increase cell-to-cell viral transmission and facilitate propagation of human immunodeficiency virus type 1 (HIV-1) and human T-cell leukaemia virus type 1 (HTLV-1). VS formation also plays a more general role in viral replication and dissemination. VS have been observed in vitro and ex vivo between uninfected T cells and T cells infected with HIV-1 or HTLV-1. In addition, dendritic cells (DC) infected with HIV-1 also play an important role in viral transmission to uninfected CD4+ T cells via VS formation. Recent studies revealed that several DC subsets are also infected with HTLV-1. These findings may help explain the rapid dissemination of both viruses within secondary lymphoid tissues in vivo. VS also explain, at least in part, why HIV-1 can propagate in the mucosal sites during sexual transmission. Furthermore, in the case of HTLV-1, VS can potentially explain some of the features of HTLV-1-associated dermatitis as infected T cells in the skin contribute to the pathogenesis of this condition.
Collapse
Affiliation(s)
- Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, School of Medicine, Cardiff University and University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|
20
|
Giese S, Marsh M. Tetherin can restrict cell-free and cell-cell transmission of HIV from primary macrophages to T cells. PLoS Pathog 2014; 10:e1004189. [PMID: 24991932 PMCID: PMC4081785 DOI: 10.1371/journal.ppat.1004189] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
Bst-2/Tetherin inhibits the release of HIV by tethering newly formed virus particles to the plasma membrane of infected cells. Although the mechanisms of Tetherin-mediated restriction are increasingly well understood, the biological relevance of this restriction in the natural target cells of HIV is unclear. Moreover, whether Tetherin exerts any restriction on the direct cell-cell spread of HIV across intercellular contacts remains controversial. Here we analyse the restriction endogenous Tetherin imposes on HIV transmission from primary human macrophages, one of the main targets of HIV in vivo. We find that the mRNA and protein levels of Tetherin in macrophages are comparable to those in T cells from the same donors, and are highly upregulated by type I interferons. Improved immunocytochemistry protocols enable us to demonstrate that Tetherin localises to the cell surface, the trans-Golgi network, and the macrophage HIV assembly compartments. Tetherin retains budded virions in the assembly compartments, thereby impeding the release and cell-free spread of HIV, but it is not required for the maintenance of these compartments per se. Notably, using a novel assay to quantify cell-cell spread, we show that Tetherin promotes the transfer of virus clusters from macrophages to T cells and thereby restricts the direct transmission of a dual-tropic HIV-1. Kinetic analyses provide support for the notion that this direct macrophage-T cell spread is mediated, at least in part, by so-called virological synapses. Finally, we demonstrate that the viral Vpu protein efficiently downregulates the cell surface and overall levels of Tetherin, and thereby abrogates this HIV restriction in macrophages. Together, our study shows that Tetherin, one of the most potent HIV restriction factors identified to date, can inhibit virus spread from primary macrophages, regardless of the mode of transmission.
Collapse
Affiliation(s)
- Sebastian Giese
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mark Marsh
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Buitendijk M, Eszterhas SK, Howell AL. Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 2014; 30:457-67. [PMID: 24328502 DOI: 10.1089/aid.2013.0199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.
Collapse
Affiliation(s)
- Maarten Buitendijk
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Physiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Susan K. Eszterhas
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Alexandra L. Howell
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|