1
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
2
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
3
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
4
|
Han MM, Frizzi KE, Ellis RJ, Calcutt NA, Fields JA. Prevention of HIV-1 TAT Protein-Induced Peripheral Neuropathy and Mitochondrial Disruption by the Antimuscarinic Pirenzepine. Front Neurol 2021; 12:663373. [PMID: 34211430 PMCID: PMC8239242 DOI: 10.3389/fneur.2021.663373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.
Collapse
Affiliation(s)
- May Madi Han
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Katie E Frizzi
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Ronald J Ellis
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Tripiciano A, Picconi O, Moretti S, Sgadari C, Cafaro A, Francavilla V, Arancio A, Paniccia G, Campagna M, Pavone-Cossut MR, Sighinolfi L, Latini A, Mercurio VS, Pietro MD, Castelli F, Saracino A, Mussini C, Perri GD, Galli M, Nozza S, Ensoli F, Monini P, Ensoli B. Anti-Tat immunity defines CD4 + T-cell dynamics in people living with HIV on long-term cART. EBioMedicine 2021; 66:103306. [PMID: 33839064 PMCID: PMC8105504 DOI: 10.1016/j.ebiom.2021.103306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Low-level HIV viremia originating from virus reactivation in HIV reservoirs is often present in cART treated individuals and represents a persisting source of immune stimulation associated with sub-optimal recovery of CD4+ T cells. The HIV-1 Tat protein is released in the extracellular milieu and activates immune cells and latent HIV, leading to virus production and release. However, the relation of anti-Tat immunity with residual viremia, persistent immune activation and CD4+ T-cell dynamics has not yet been defined. METHODS Volunteers enrolled in a 3-year longitudinal observational study were stratified by residual viremia, Tat serostatus and frequency of anti-Tat cellular immune responses. The impact of anti-Tat immunity on low-level viremia, persistent immune activation and CD4+ T-cell recovery was investigated by test for partitions, longitudinal regression analysis for repeated measures and generalized estimating equations. FINDINGS Anti-Tat immunity is significantly associated with higher nadir CD4+ T-cell numbers, control of low-level viremia and long-lasting CD4+ T-cell recovery, but not with decreased immune activation. In adjusted analysis, the extent of CD4+ T-cell restoration reflects the interplay among Tat immunity, residual viremia and immunological determinants including CD8+ T cells and B cells. Anti-Env immunity was not related to CD4+ T-cell recovery. INTERPRETATION Therapeutic approaches aiming at reinforcing anti-Tat immunity should be investigated to improve immune reconstitution in people living with HIV on long-term cART. TRIAL REGISTRATION ISS OBS T-002 ClinicalTrials.gov identifier: NCT01024556 FUNDING: Italian Ministry of Health, special project on the Development of a vaccine against HIV based on the Tat protein and Ricerca Corrente 2019/2020.
Collapse
Affiliation(s)
- Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Vittorio Francavilla
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giovanni Paniccia
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | | | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy
| | - Alessandra Latini
- Unit of Dermatology and Sexually Transmitted Diseases, San Gallicano Institute - Istituti Fisioterapici Ospitalieri (IFO) IRCCS, Rome, Italy
| | - Vito S Mercurio
- Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy
| | - Massimo Di Pietro
- Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy
| | - Francesco Castelli
- University Division of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Annalisa Saracino
- Division of Infectious Diseases, Policlinic Hospital, University of Bari, Bari, Italy
| | - Cristina Mussini
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy
| | - Giovanni Di Perri
- Clinic of Infectious Diseases, Amedeo di Savoia University Hospital, Turin, Italy
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco University Hospital, Milan, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, S. Raffaele University Hospital IRCCS, Milan, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute - (IFO) IRCCS, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
6
|
A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8030511. [PMID: 32911701 PMCID: PMC7564621 DOI: 10.3390/vaccines8030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.
Collapse
|
7
|
The Tat Protein of HIV-1 Prevents the Loss of HSV-Specific Memory Adaptive Responses and Favors the Control of Viral Reactivation. Vaccines (Basel) 2020; 8:vaccines8020274. [PMID: 32512757 PMCID: PMC7349931 DOI: 10.3390/vaccines8020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The development of therapeutic strategies to control the reactivation of the Herpes Simplex Virus (HSV) is an unaddressed priority. In this study, we evaluated whether Tat, a HIV-1 protein displaying adjuvant functions, could improve previously established HSV-specific memory responses and prevent viral reactivation. To this aim, mice were infected with non-lethal doses of HSV-1 and, 44 days later, injected or not with Tat. Mice were then monitored to check their health status and measure memory HSV-specific cellular and humoral responses. The appearance of symptoms associated with HSV-reactivation was observed at significantly higher frequencies in the control group than in the Tat-treated mice. In addition, the control animals experienced a time-dependent decrease in HSV-specific Immunoglobulin G (IgG), while the Tat-treated mice maintained antibody titers over time. IgG levels were directly correlated with the number of HSV-specific CD8+ T cells, suggesting an effect of Tat on both arms of the adaptive immunity. Consistent with the maintenance of HSV-specific immune memory, Tat-treated mice showed a better control of HSV-1 re-infection. Although further studies are necessary to assess whether similar effects are observed in other models, these results indicate that Tat exerts a therapeutic effect against latent HSV-1 infection and re-infection by favoring the maintenance of adaptive immunity.
Collapse
|
8
|
Jin H, Li D, Lin MH, Li L, Harrich D. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses 2020; 12:v12040415. [PMID: 32276443 PMCID: PMC7232260 DOI: 10.3390/v12040415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV) establishes a chronic infection that can be well controlled, but not cured, by combined antiretroviral therapy (cART). Interventions have been explored to accomplish a functional cure, meaning that a patient remains infected but HIV is undetectable in the blood, with the aim of allowing patients to live without cART. Tat, the viral transactivator of transcription protein, plays a critical role in controlling HIV transcription, latency, and viral rebound following the interruption of cART treatment. Therefore, a logical approach for controlling HIV would be to block Tat. Tackling Tat with inhibitors has been a difficult task, but some recent discoveries hold promise. Two anti-HIV proteins, Nullbasic (a mutant of Tat) and HT1 (a fusion of HEXIM1 and Tat functional domains) inhibit viral transcription by interfering with the interaction of Tat and cellular factors. Two small molecules, didehydro-cortistatin A (dCA) and triptolide, inhibit Tat by different mechanisms: dCA through direct binding and triptolide through enhanced proteasomal degradation. Finally, two Tat-based vaccines under development elicit Tat-neutralizing antibodies. These vaccines have increased the levels of CD4+ cells and reduced viral loads in HIV-infected people, suggesting that the new vaccines are therapeutic. This review summarizes recent developments of anti-Tat agents and how they could contribute to a functional cure for HIV.
Collapse
Affiliation(s)
- Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
- Correspondence: ; Tel.: +617-3845-3679
| |
Collapse
|
9
|
Moretti S, Cafaro A, Tripiciano A, Picconi O, Buttò S, Ensoli F, Sgadari C, Monini P, Ensoli B. HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev Vaccines 2020; 19:71-84. [PMID: 31957513 DOI: 10.1080/14760584.2020.1712199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Although successful at suppressing HIV replication, combination antiretroviral therapy (cART) only partially restores immune functions and fails to reduce the latent HIV reservoir, thus requiring novel interventions for its intensification.Areas covered: Here are reviewed therapeutic vaccine candidates that are being developed to this goal. Among them, the Tat vaccine has been shown to promote immune restoration, including CD4+ T-cell recovery in low immunological responders, and to reduce the virus reservoirs well beyond what achieved with long-term suppressive cART.Expert opinion: The authors propose the Tat vaccine as a promising vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies, suggesting that targeting a key protein in the virus life cycle is pivotal to success.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines (Basel) 2019; 7:vaccines7030099. [PMID: 31454973 PMCID: PMC6789840 DOI: 10.3390/vaccines7030099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
11
|
Sgadari C, Monini P, Tripiciano A, Picconi O, Casabianca A, Orlandi C, Moretti S, Francavilla V, Arancio A, Paniccia G, Campagna M, Bellino S, Meschiari M, Nozza S, Sighinolfi L, Latini A, Muscatello A, Saracino A, Di Pietro M, Galli M, Cafaro A, Magnani M, Ensoli F, Ensoli B. Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study. Front Immunol 2019; 10:233. [PMID: 30815001 PMCID: PMC6381398 DOI: 10.3389/fimmu.2019.00233] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 02/02/2023] Open
Abstract
Introduction: Tat, a key HIV virulence protein, has been targeted for the development of a therapeutic vaccine aimed at cART intensification. Results from phase II clinical trials in Italy (ISS T-002) and South Africa (ISS T-003) indicated that Tat vaccination promotes increases of CD4+ T-cells and return to immune homeostasis while reducing the virus reservoir in chronically cART-treated patients. Here we present data of 92 vaccinees (59% of total vaccinees) enrolled in the ISS T-002 8-year extended follow-up study (ISS T-002 EF-UP, ClinicalTrials.gov NCT02118168). Results: Anti-Tat antibodies (Abs) induced upon vaccination persisted for the entire follow-up in 34/92 (37%) vaccinees, particularly when all 3 Ab classes (A/G/M) were present (66% of vaccinees), as most frequently observed with Tat 30 μg regimens. CD4+ T cells increased above study-entry levels reaching a stable plateau at year 5 post-vaccination, with the highest increase (165 cells/μL) in the Tat 30 μg, 3 × regimen. CD4+ T-cell increase occurred even in subjects with CD4+ nadir ≤ 250 cells/uL and in poor immunological responders and was associated with a concomitant increase of the CD4+/CD8+ T-cell ratio, a prognostic marker of morbidity/mortality inversely related to HIV reservoir size. Proviral DNA load decreased over time, with a half-life of 2 years and an estimated 90% reduction at year 8 in the Tat 30 μg, 3 × group. In multivariate analysis the kinetic and amplitude of both CD4+ T-cell increase and proviral DNA reduction were fastest and highest in subjects with all 3 anti-Tat Ab classes and in the 30 μg, 3 × group, irrespective of drug regimens (NNRTI/NRTI vs. PI). HIV proviral DNA changes from baseline were inversely related to CD4+/CD8+ T-cell ratio and CD4+ T-cell changes, and directly related to the changes of CD8+ T cells. Further, HIV DNA decay kinetics were inversely related to the frequency and levels of intermittent viremia. Finally, Tat vaccination was similarly effective irrespective of the individual immunological status or HIV reservoir size at study entry. Conclusions: Tat immunization induces progressive immune restoration and reduction of virus reservoirs above levels reached with long-term cART, and may represent an optimal vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies.
Collapse
Affiliation(s)
- Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Chiara Orlandi
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Paniccia
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Bellino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Marianna Meschiari
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy
| | - Alessandra Latini
- Unit of Dermatology and Sexually Transmitted Diseases, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
| | - Annalisa Saracino
- Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy
| | - Massimo Di Pietro
- Unit of Infectious Diseases, Santa Maria Annunziata Hospital, Florence, Italy
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Wodarski R, Bagdas D, Paris JJ, Pheby T, Toma W, Xu R, Damaj MI, Knapp PE, Rice AS, Hauser KF. Reduced intraepidermal nerve fibre density, glial activation, and sensory changes in HIV type-1 Tat-expressing female mice: involvement of Tat during early stages of HIV-associated painful sensory neuropathy. Pain Rep 2018; 3:e654. [PMID: 29922746 PMCID: PMC5999412 DOI: 10.1097/pr9.0000000000000654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/19/2018] [Accepted: 03/17/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION HIV infection is associated with chronic pain states, including sensory neuropathy, which affects greater than 40% of patients. OBJECTIVES AND METHODS To determine the impact of HIV-Tat induction on nociceptive behaviour in female mice conditionally expressing HIV Tat1-86 protein through a doxycycline (DOX)-driven glial fibrillary acidic protein promoter, intraepidermal nerve fibre density and immune cell activation in the dorsal root ganglion (DRG) and spinal cord were assessed by immunohistochemistry. Mice were assessed for mechanical and thermal sensitivity for 9 weeks using von-Frey and Hargreaves tests. RESULTS Intraepidermal nerve fibre density was significantly reduced after 6 weeks of Tat induction, similar to sensory neuropathy seen in clinical HIV infection. Tat induction through DOX caused a significant reduction in paw withdrawal thresholds in a time-dependent manner starting the 4th week after Tat induction. No changes in paw withdrawal latencies were seen in Tat(-) control mice lacking the tat transgene. Although reductions in paw withdrawal thresholds increased throughout the study, no significant change in spontaneous motor activity was observed. Spinal cord (cervical and lumbar), DRG, and hind paw skin were collected at 8 days and 6 weeks after Tat induction. HIV-Tat mRNA expression was significantly increased in lumbar DRG and skin samples 8 days after DOX treatment. Tat induced a significant increase in the number of Iba-1 positive cells at 6 weeks, but not after 8 days, of exposure. No differences in glial fibrillary acidic protein immunoreactivity were observed. CONCLUSION These results suggest that Tat protein contributes to painful HIV-related sensory neuropathy during the initial stages of the pathogenesis.
Collapse
Affiliation(s)
- Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Imperial College, Chelsea and Westminster Hospital Campus, London, United Kingdom
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason J. Paris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Tim Pheby
- Pain Research Group, Department of Surgery and Cancer, Imperial College, Chelsea and Westminster Hospital Campus, London, United Kingdom
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ruqiang Xu
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery and Cancer, Imperial College, Chelsea and Westminster Hospital Campus, London, United Kingdom
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
The HIV-1 Tat protein affects human CD4+ T-cell programing and activation, and favors the differentiation of naïve CD4+ T cells. AIDS 2018; 32:575-581. [PMID: 29280760 DOI: 10.1097/qad.0000000000001734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions, such as chronic activation of the immune system, premature aging and loss of CD4 T cells, in particular within the naïve compartment. The Tat protein of HIV is released extracellularly and enters neighboring cells affecting their functionality, for instance impacting on CD8 T-cell programs and activity. As the presence and/or induction of anti-Tat immune responses is associated with reduced T-cell dysfunction and CD4 T-cell loss, we investigated whether Tat impacts human resting or activated CD4 T cells. METHODS Purified CD4 T cells were activated by T cell receptor engagement in the presence or absence of Tat. Cytokine production, surface phenotype and expression of transcription factors important for T-cell programing were measured. Purified naïve CD4 T cells were cultured in nonpolarizing conditions in the presence or absence of Tat and their proliferation and differentiation was evaluated. RESULTS Tat favors the secretion of IL2, IFNγ and TNFα in CD4 T cells, as well as the upregulation of T-bet and Eomes expression. Naïve CD4 T cells cultured in the presence of Tat showed enhanced expansion and differentiation toward memory phenotype, showing in particular recruitment into the effector memory T-cell pool. CONCLUSION Tat affects the programing and functionality of CD4 T lymphocytes favoring the differentiation of naïve CD4 T cells.
Collapse
|
14
|
Cafaro A, Sgadari C, Picconi O, Tripiciano A, Moretti S, Francavilla V, Pavone Cossut MR, Buttò S, Cozzone G, Ensoli F, Monini P, Ensoli B. "cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies". Expert Rev Vaccines 2017; 17:115-126. [PMID: 29243498 DOI: 10.1080/14760584.2018.1418666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In spite of its success at suppressing HIV replication, combination antiretroviral therapy (cART) only partially reduces immune dysregulation and loss of immune functions. These cART-unmet needs appear to be due to persistent virus replication and cell-to-cell transmission in reservoirs, and are causes of increased patients' morbidity and mortality. Up to now, therapeutic interventions aimed at cART-intensification by attacking the virus reservoir have failed. AREAS COVERED We briefly review the rationale and clinical development of Tat therapeutic vaccine in cART-treated subjects in Italy and South Africa (SA). Vaccination with clade-B Tat induced cross-clade neutralizing antibodies, immune restoration, including CD4+ T cell increase particularly in low immunological responders, and reduction of proviral DNA. Phase III efficacy trials in SA are planned both in adult and pediatric populations. EXPERT COMMENTARY We propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and may lead to a functional cure and provide new perspectives for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Cecilia Sgadari
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Orietta Picconi
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Antonella Tripiciano
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Sonia Moretti
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Vittorio Francavilla
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | | | - Stefano Buttò
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | | | - Fabrizio Ensoli
- b Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute , Istituti Fisioterapici Ospitalieri , Rome , Italy
| | - Paolo Monini
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Barbara Ensoli
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
15
|
Sørensen B, Sommerfelt MA, Stjernholm G, Smith PL, Ökvist M, Hovden AO, Hoddevik G, Redfield R, Ustina V, Jelmert Ø, Zeldis J, Dalgleish A. Correlation of Antibody Responses to a Peptide Antigen gp120-C5 501-512/gp41 732-744 with HIV Disease Progression. AIDS Res Hum Retroviruses 2017; 33:558-566. [PMID: 28051320 DOI: 10.1089/aid.2016.0184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies to the carboxy-terminal constant (C5) region 5 of the HIV-1 envelope glycoprotein gp120 have previously been associated with slow disease progression. This is one of the regions on gp120 that interact with the transmembrane glycoprotein, gp41, anchoring it to the viral and infected cell membrane. This study analyzed humoral responses to a novel heterodimeric peptide construct comprising the C5501-512 region and a compatible region on gp41732-744. Antibody levels to C5501-512/gp41732-744 were associated with slow disease progression in a treatment naive historical longitudinal cohort from Norway (n = 32; p = .00001). Elevated anti-C5501-512/gp41732-744 antibody levels correlated with moderate viral load (VL) (50-10,000 copies/ml) in a cohort, including natural viral suppressors (NVS) in the Unites States (n = 58; p = .002). Analysis of HIV-positive sera from treatment naive patients in Estonia (n = 300) showed an inverse correlation between anti-C5501-512/gp41732-744 antibodies and VL when comparing VL 2,000-10,000 copies/ml with VL >10,000 (p = .050). Further mapping using peptide inhibition of antibody binding revealed that responses to the C5501-506 subdomain correlated with preserved CD4 counts (n = 55; p = .0012) irrespective of VL in this cohort. The C5 region encompassing C5501-506 shows sequence similarity to the shared epitope (SE) of certain HLA-DR associated with immune dysfunction. Partial antigenic cross-reactivity between SE and C5 is indicated by partial inhibition of NVS antibody binding using SE 15-mer peptide (median 65% inhibition), the C5501-506 6-mer peptide (79% inhibition), and binding of rheumatoid arthritis patient sera to both SE and C5 peptide sequences. The potential influence of these observations on HIV-1 pathogenesis remains to be determined.
Collapse
Affiliation(s)
| | | | | | - Peter Lawrence Smith
- St. George's, University of London, Institute of Infection and Immunity, London, United Kingdom
| | | | | | - Gunnar Hoddevik
- Department of Virology, The Norwegian Institute of Public Health, Oslo, Norway
| | - Robert Redfield
- Department of Medicine, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Valentina Ustina
- State Reference Laboratory of HIV Diagnostics, West-Tallinn Central Hospital, Estonia
| | | | - Jerome Zeldis
- Celgene Corp./Celgene Global Health, Summit, New Jersey
| | - Angus Dalgleish
- St. George's, University of London, Institute of Infection and Immunity, London, United Kingdom
| |
Collapse
|
16
|
Nicoli F, Chachage M, Clowes P, Bauer A, Kowour D, Ensoli B, Cafaro A, Maboko L, Hoelscher M, Gavioli R, Saathoff E, Geldmacher C. Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort. BMC Infect Dis 2016; 16:344. [PMID: 27450538 PMCID: PMC4957276 DOI: 10.1186/s12879-016-1647-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of IgG and IgM against Tat, an HIV protein important for viral replication and immune dysfunction, is associated with slow disease progression in clade B HIV-infected individuals. However, although Tat activities strictly depend on the viral clade, our knowledge about the importance of anti-Tat antibodies in non-clade B HIV infection is poor. The objective of this study was to investigate the association of different anti-Tat antibody isotypes with disease progression in non-clade B HIV-infected subjects and to study the relationship between anti-Tat humoral responses and immunological abnormalities. METHODS Anti-clade B and -clade C Tat IgG, IgM and IgA titers were assessed in serum samples from 96 cART-naïve subjects with chronic HIV infection from Mbeya, Tanzania, and associated with CD4(+) T cell count, plasma viremia and CD4(+) and CD8(+) T cell phenotypes. RESULTS Anti-Tat IgM were preferentially detected in chronic HIV-infected subjects with low T cell activation (p-value = 0.03) and correlated with higher CD4(+) T cell counts and lower viral loads irrespective of the duration of infection (p-value = 0.019 and p-value = 0.037 respectively). Conversely, anti-Tat IgA were preferentially detected in individuals with low CD4(+) T cell counts and high viral load (p-value = 0.02 and p-value < 0.001 respectively). The simultaneous presence of anti-Tat IgG and IgM protected from fast CD4(+) T cell decline (p-value < 0.01) and accumulation of CD38(+)HLADR(+)CD8(+) T cells (p- value = 0.029). CONCLUSIONS Anti-Tat IgG alone are not protective in non-clade B infected subjects, unless concomitant with IgM, suggesting a protective role of persistent anti-Tat IgM irrespective of the infecting clade.
Collapse
Affiliation(s)
- Francesco Nicoli
- Center for International Health, Ludwig-Maximilians-Universität München, Leopoldstraße 7, 80802, Munich, Germany. .,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy. .,Current address: CIMI INSERM U1135, 91 bd del'Hopital, 75013, Paris, France.
| | - Mkunde Chachage
- Center for International Health, Ludwig-Maximilians-Universität München, Leopoldstraße 7, 80802, Munich, Germany.,National Institute for Medical Research (NIMR)-Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Petra Clowes
- National Institute for Medical Research (NIMR)-Mbeya Medical Research Centre, Mbeya, Tanzania.,Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Asli Bauer
- National Institute for Medical Research (NIMR)-Mbeya Medical Research Centre, Mbeya, Tanzania.,Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Dickens Kowour
- National Institute for Medical Research (NIMR)-Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Leonard Maboko
- National Institute for Medical Research (NIMR)-Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elmar Saathoff
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
17
|
Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses 2016; 8:v8070196. [PMID: 27438849 PMCID: PMC4974531 DOI: 10.3390/v8070196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
HIV-1 Tat plays a critical role in viral transactivation. Subtype-B Tat has potential use as a therapeutic vaccine. However, viral genetic diversity and population genetics would significantly impact the efficacy of such a vaccine. Over 70% of the 37-million HIV-infected individuals are in sub-Saharan Africa (SSA) and harbor non-subtype-B HIV-1. Using specimens from 100 HIV-infected Cameroonians, we analyzed the sequences of HIV-1 Tat exon-1, its functional domains, post-translational modifications (PTMs), and human leukocyte antigens (HLA)-binding epitopes. Molecular phylogeny revealed a high genetic diversity with nine subtypes, CRF22_01A1/CRF01_AE, and negative selection in all subtypes. Amino acid mutations in Tat functional domains included N24K (44%), N29K (58%), and N40K (30%) in CRF02_AG, and N24K in all G subtypes. Motifs and phosphorylation analyses showed conserved amidation, N-myristoylation, casein kinase-2 (CK2), serine and threonine phosphorylation sites. Analysis of HLA allelic frequencies showed that epitopes for HLAs A*0205, B*5301, Cw*0401, Cw*0602, and Cw*0702 were conserved in 58%-100% of samples, with B*5301 epitopes having binding affinity scores > 100 in all subtypes. This is the first report of N-myristoylation, amidation, and CK2 sites in Tat; these PTMs and mutations could affect Tat function. HLA epitopes identified could be useful for designing Tat-based vaccines for highly diverse HIV-1 populations, as in SSA.
Collapse
|
18
|
Tomusange K, Wijesundara D, Gummow J, Garrod T, Li Y, Gray L, Churchill M, Grubor-Bauk B, Gowans EJ. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice. Sci Rep 2016; 6:29131. [PMID: 27358023 PMCID: PMC4928126 DOI: 10.1038/srep29131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Tamsin Garrod
- Royal Australasian College of Surgeons, Adelaide, South Australia, Australia
| | - Yanrui Li
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne VIC, Australia
| | - Melissa Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric J. Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Ensoli B, Nchabeleng M, Ensoli F, Tripiciano A, Bellino S, Picconi O, Sgadari C, Longo O, Tavoschi L, Joffe D, Cafaro A, Francavilla V, Moretti S, Pavone Cossut MR, Collacchi B, Arancio A, Paniccia G, Casabianca A, Magnani M, Buttò S, Levendal E, Ndimande JV, Asia B, Pillay Y, Garaci E, Monini P. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology 2016; 13:34. [PMID: 27277839 PMCID: PMC4899930 DOI: 10.1186/s12977-016-0261-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. METHODS The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. RESULTS Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat vaccination increased CD4(+) T-cell numbers (all participants tested), particularly when baseline levels were still low after years of therapy, and this had a positive correlation with HIV neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained viral load rebound and maintained CD4(+) T-cell numbers over study entry levels as compared to placebo. CONCLUSIONS The data indicate that Tat vaccination can restore the immune system and induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds and infecting viruses, supporting the conduct of phase III studies in South Africa. Trial registration ClinicalTrials.gov NCT01513135, 01/23/2012.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Fabrizio Ensoli
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Antonella Tripiciano
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,National Center for Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Italian Medicines Agency, Rome, Italy
| | - Lara Tavoschi
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa.,European Center for Disease Prevention and Control, Stockholm, Sweden
| | - Daniel Joffe
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Vittorio Francavilla
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Angela Arancio
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Giovanni Paniccia
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Stefano Buttò
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Elise Levendal
- South African Medical Research Council, Cape Town, South Africa.,Health Systems Trust, Cape Town, South Africa
| | | | - Bennett Asia
- National Department of Health, Pretoria, South Africa
| | - Yogan Pillay
- National Department of Health, Pretoria, South Africa
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy.,University of Tor Vergata, Rome, Italy
| | - Paolo Monini
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | | |
Collapse
|
20
|
Shiohama Y, Naito T, Matsuzaki T, Tanaka R, Tomoyose T, Takashima H, Fukushima T, Tanaka Y, Saito M. Absolute quantification of HTLV-1 basic leucine zipper factor (HBZ) protein and its plasma antibody in HTLV-1 infected individuals with different clinical status. Retrovirology 2016; 13:29. [PMID: 27117327 PMCID: PMC4847349 DOI: 10.1186/s12977-016-0263-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), which is encoded by a minus strand mRNA, is thought to play important roles in the development of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, a comprehensive analysis of HBZ, including mRNA and protein expression, humoral immunoreactivity against HBZ, and HTLV-1 proviral load (PVL), in HTLV-1-infected individuals with different clinical status has not been reported previously. RESULTS In this study, using novel monoclonal antibody-based in-house enzyme-linked immunosorbent assay systems, we report the absolute quantification of HBZ protein and its plasma antibody in clinical samples from HTLV-1-infected individuals with different clinical status. The data were compared to both HBZ mRNA levels and PVL. The results showed that plasma anti-HBZ antibody was detectable only in 10.4 % (5/48) of asymptomatic carriers (ACs), 10.8 % (13/120) of HAM/TSP patients, and 16.7 % (7/42) of ATL patients. HBZ protein was detected in three out of five patients with acute ATL, but was not detected in patients with HAM/TSP (0/10) or ACs (0/4). Thus, an antibody response to HBZ was not associated with the PVL or the expression of HBZ (both at the mRNA and protein levels) or the clinical status of the infection. CONCLUSIONS The present results emphasize the extremely low expression and immunogenicity of HBZ in natural HTLV-1 infection. However, there is a possibility that the low but distinct expression of HBZ protein in PBMCs is associated with the survival of HTLV-1-infected cells and the development of ATL.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.,Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Toshio Matsuzaki
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmnology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
21
|
Loret EP, Darque A, Jouve E, Loret EA, Nicolino-Brunet C, Morange S, Castanier E, Casanova J, Caloustian C, Bornet C, Coussirou J, Boussetta J, Couallier V, Blin O, Dussol B, Ravaux I. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology 2016; 13:21. [PMID: 27036656 PMCID: PMC4818470 DOI: 10.1186/s12977-016-0251-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A Tat Oyi vaccine preparation was administered with informed consent to 48 long-term HIV-1 infected volunteers whose viral loads had been suppressed by antiretroviral therapy (cART). These volunteers were randomized in double-blind method into four groups (n = 12) that were injected intradermally with 0, 11, 33, or 99 µg of synthetic Tat Oyi proteins in buffer without adjuvant at times designated by month 0 (M0), M1 and M2, respectively. The volunteers then underwent a structured treatment interruption between M5 and M7. RESULTS The primary outcomes of this phase I/IIa clinical trial were the safety and lowering the extent of HIV RNA rebound after cART interruption. Only one undesirable event possibly due to vaccination was observed. The 33 µg dose was most effective at lowering the extent of HIV RNA and DNA rebound (Mann and Whitney test, p = 0.07 and p = 0.001). Immune responses against Tat were increased at M5 and this correlated with a low HIV RNA rebound at M6 (p = 0.01). CONCLUSION This study suggests in vivo that extracellular Tat activates and protects HIV infected cells. The Tat Oyi vaccine in association with cART may provide an efficient means of controlling the HIV-infected cell reservoir.
Collapse
Affiliation(s)
- Erwann P Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.
| | - Albert Darque
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.,Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Jouve
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Elvenn A Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Corinne Nicolino-Brunet
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Sophie Morange
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Castanier
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Josiane Casanova
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Christine Caloustian
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Charléric Bornet
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Julie Coussirou
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Jihen Boussetta
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Vincent Couallier
- Unité Mixte de Recherche CNRS 5251, Institut de Mathématique de Bordeaux, CNRS, Bordeaux 2 University, 33000, Bordeaux, France
| | - Olivier Blin
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Bertrand Dussol
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Isabelle Ravaux
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| |
Collapse
|
22
|
Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol 2016; 17:104-109. [PMID: 26985884 DOI: 10.1016/j.coviro.2016.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Non-efficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials.
Collapse
|
23
|
Finessi V, Nicoli F, Gallerani E, Sforza F, Sicurella M, Cafaro A, Caputo A, Ensoli B, Gavioli R. Effects of different routes of administration on the immunogenicity of the Tat protein and a Tat-derived peptide. Hum Vaccin Immunother 2016; 11:1489-93. [PMID: 25875962 DOI: 10.1080/21645515.2015.1016676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of the Tat protein of HIV in vaccines against AIDS showed promising results in primate and human studies. To characterize the impact of the administration route on the induction of humoral responses at systemic and mucosal levels, we compared intradermal, intramuscular and mucosal immunizations with Tat and a Tat-derived peptide. Mice were immunized with the Tat protein by different routes and the titer and isotype of anti-Tat antibodies were assessed in serum and mucosal lavages. Intramuscular and intradermal administrations showed comparable immunogenicity, while the mucosal administration was unable to induce IgM in serum and IgG at mucosal sites but showed superior immunogenicity in terms of IgA induction. Anti-Tat antibodies were also obtained upon vaccination with the immunodominant Tat 1-20 peptide which was, however, less immunogenic than the whole Tat protein.
Collapse
Affiliation(s)
- Valentina Finessi
- a Department of Life Sciences and Biotechnology; University of Ferrara ; Ferrara , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
La Venuta G, Zeitler M, Steringer JP, Müller HM, Nickel W. The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. J Biol Chem 2015; 290:27015-27020. [PMID: 26416892 DOI: 10.1074/jbc.r115.689257] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.
Collapse
Affiliation(s)
| | - Marcel Zeitler
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Walter Nickel
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Zeitler M, Steringer JP, Müller HM, Mayer MP, Nickel W. HIV-Tat Protein Forms Phosphoinositide-dependent Membrane Pores Implicated in Unconventional Protein Secretion. J Biol Chem 2015; 290:21976-84. [PMID: 26183781 DOI: 10.1074/jbc.m115.667097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/20/2022] Open
Abstract
HIV-Tat has been demonstrated to be secreted from cells in a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent manner. Here we show that HIV-Tat forms membrane-inserted oligomers, a process that is accompanied by changes in secondary structure with a strong increase in antiparallel β sheet content. Intriguingly, oligomerization of HIV-Tat on membrane surfaces leads to the formation of membrane pores, as demonstrated by physical membrane passage of small fluorescent tracer molecules. Although membrane binding of HIV-Tat did not strictly depend on PI(4,5)P2 but, rather, was mediated by a range of acidic membrane lipids, a functional interaction between PI(4,5)P2 and HIV-Tat was critically required for efficient membrane pore formation by HIV-Tat oligomers. These properties are strikingly similar to what has been reported previously for fibroblast growth factor 2 (FGF2), providing strong evidence of a common core mechanism of unconventional secretion shared by HIV-Tat and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Marcel Zeitler
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Allianz, 69120 Heidelberg, Germany
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| |
Collapse
|
27
|
Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opin Biol Ther 2015; 15 Suppl 1:S13-29. [PMID: 26096836 DOI: 10.1517/14712598.2015.1021328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Classical approaches aimed at targeting the HIV-1 envelope as well as other structural viral proteins have largely failed. The HIV-1 transactivator of transcription (Tat) is a key HIV virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. Notably, anti-Tat Abs are uncommon in natural infection and, when present, correlate with the asymptomatic state and lead to lower or no disease progression. Hence, targeting Tat represents a pathogenesis-driven intervention. AREAS COVERED Here, we review the rationale and the translational development of a therapeutic vaccine targeting the Tat protein. Preclinical and Phase I studies, Phase II trials with Tat in anti-Tat Ab-negative, virologically suppressed highly active antiretroviral therapy-treated subjects in Italy and South Africa were conducted. The results indicate that Tat-induced immune responses are necessary to restore immune homeostasis, to block the replenishment and to reduce the size of the viral reservoir. Additionally, they may help in establishing key parameters for highly active antiretroviral therapy intensification and a functional cure. EXPERT OPINION We propose the therapeutic setting as the most feasible to speed up the testing and comparison of preventative vaccine candidates, as the distinction lies in the use of the vaccine in uninfected versus infected subjects and not in the vaccine formulation.
Collapse
Affiliation(s)
- Aurelio Cafaro
- Istituto Superiore di Sanità, National AIDS Center , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, Longo O, Francavilla V, Picconi O, Sgadari C, Moretti S, Cossut MRP, Arancio A, Orlandi C, Sernicola L, Maggiorella MT, Paniccia G, Mussini C, Lazzarin A, Sighinolfi L, Palamara G, Gori A, Angarano G, Di Pietro M, Galli M, Mercurio VS, Castelli F, Di Perri G, Monini P, Magnani M, Garaci E, Ensoli B. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology 2015; 12:33. [PMID: 25924841 PMCID: PMC4414440 DOI: 10.1186/s12977-015-0151-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 μg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks. Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4(+) T-cell number ≥200 cells/μL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease. RESULTS The vaccine was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest frequency and durability in the Tat 30 μg groups (89%) particularly when given 3 times (92%). Vaccination promoted a durable and significant restoration of T, B, natural killer (NK) cells, and CD4(+) and CD8(+) central memory subsets. Moreover, a significant reduction of blood proviral DNA was seen after week 72, particularly under PI-based regimens and with Tat 30 μg given 3 times (30 μg, 3x), reaching a predicted 70% decay after 3 years from vaccination with a half-life of 88 weeks. This decay was significantly associated with anti-Tat IgM and IgG Abs and neutralization of Tat-mediated entry of oligomeric Env in dendritic cells, which predicted HIV-1 DNA decay. Finally, the 30 μg, 3x group was the only one showing significant increases of NK cells and CD38(+)HLA-DR(+)/CD8(+) T cells, a phenotype associated with increased killing activity in elite controllers. CONCLUSIONS Anti-Tat immune responses are needed to restore immune homeostasis and effective anti-viral responses capable of attacking the virus reservoir. Thus, Tat immunization represents a promising pathogenesis-driven intervention to intensify HAART efficacy.
Collapse
Affiliation(s)
- Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy.
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Antonella Tripiciano
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Vittorio Francavilla
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria R Pavone Cossut
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Angela Arancio
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Chiara Orlandi
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Leonardo Sernicola
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria T Maggiorella
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Giovanni Paniccia
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cristina Mussini
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy.
| | - Adriano Lazzarin
- Division of Infectious Diseases, S. Raffaele Hospital, Milan, Italy.
| | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy.
| | - Guido Palamara
- Department of Infectious Dermatology, San Gallicano Hospital, Rome, Italy.
| | - Andrea Gori
- Division of Infectious Diseases, San Gerardo Hospital, Monza, Italy.
| | - Gioacchino Angarano
- Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy.
| | - Massimo Di Pietro
- Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy.
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy.
| | - Vito S Mercurio
- Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy.
| | - Francesco Castelli
- Division of Tropical and Infectious Diseases, Spedali Civili, Brescia, Italy.
| | - Giovanni Di Perri
- Clinic of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy.
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy, present address University of Tor Vergata, Rome, 00173, Italy.
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|
29
|
Tomusange K, Yu W, Suhrbier A, Wijesundara D, Grubor-Bauk B, Gowans EJ. Engineering human rhinovirus serotype-A1 as a vaccine vector. Virus Res 2015; 203:72-6. [PMID: 25869880 DOI: 10.1016/j.virusres.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/28/2015] [Accepted: 04/01/2015] [Indexed: 01/30/2023]
Abstract
Herein we describe the construction of recombinant human rhinoviruses (rHRVs) encoding HIV Gag or Tat by inserting the full length tat gene or regions of the gag gene flanked by sequences encoding the HRV 2A protease cleavage site into the junction between HRV genes encoding structural (P1) and non-structural (P2) proteins. Most recombinants were unstable, but this was corrected by mutation of the flanking cleavage sites. Thereafter, all rHRV constructs retained the inserts throughout six passages. Such constructs may find utility as vaccine vectors to generate mucosal immunity.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
30
|
Arenaccio C, Manfredi F, Anticoli S, Chiozzini C, Federico M. Uncovering the role of defective HIV-1 in spreading viral infection. Future Virol 2015. [DOI: 10.2217/fvl.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Defective HIV-1 genomes populate blood cells of HIV-1 infected patients, especially during HAART treatment. They can express viral proteins which, if released, may induce bystander effects favoring viral spread. Here, we review recent literature regarding the effects of extracellular HIV-1 proteins which can act as effectors of transcriptionally active, defective HIV-1, including Gag p17, Env gp120, Vpr, Tat and Nef. It has been very recently described that, different to the other HIV products, the bystander effects of Nef can be mediated by exosomes, that is, nanovesicles constitutively released by all cell types. Exosomes from Nef-expressing cells induce cell activation and HIV-1 susceptibility in resting CD4+ T lymphocytes in a TNF-α-dependent way. This mechanism likely contributes to virus persistence in HAART-treated patients.
Collapse
Affiliation(s)
| | | | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
31
|
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) - is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
Collapse
Affiliation(s)
- Jaclyn K Mann
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
| | - Thumbi Ndung’u
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139 USA
- />Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
32
|
Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines. PLoS One 2014; 9:e111360. [PMID: 25356594 PMCID: PMC4214729 DOI: 10.1371/journal.pone.0111360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.
Collapse
|
33
|
Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. Challenges in HIV Vaccine Research for Treatment and Prevention. Front Immunol 2014; 5:417. [PMID: 25250026 PMCID: PMC4157563 DOI: 10.3389/fimmu.2014.00417] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022] Open
Abstract
Many attempts have been made or are ongoing for HIV prevention and HIV cure. Many successes are in the list, particularly for HIV drugs, recently proposed also for prevention. However, no eradication of infection has been achieved so far with any drug. Further, a residual immune dysregulation associated to chronic immune activation and incomplete restoration of B and T cell subsets, together with HIV DNA persistence in reservoirs, are still unmet needs of the highly active antiretroviral therapy, causing novel “non-AIDS related” diseases that account for a higher risk of death even in virologically suppressed patients. These “ART unmet needs” represent a problem, which is expected to increase by ART roll out. Further, in countries such as South Africa, where six millions of individuals are infected, ART appears unable to contain the epidemics. Regretfully, all the attempts at developing a preventative vaccine have been largely disappointing. However, recent therapeutic immunization strategies have opened new avenues for HIV treatment, which might be exploitable also for preventative vaccine approaches. For example, immunization strategies aimed at targeting key viral products responsible of virus transmission, activation, and maintenance of virus reservoirs may intensify drug efficacy and lead to a functional cure providing new perspectives also for prevention and future virus eradication strategies. However, this approach imposes new challenges to the scientific community, vaccine developers, and regulatory bodies, such as the identification of novel immunological and virological biomarkers to assess efficacy end-points, taking advantage from the natural history of infection and exploiting lessons from former trials. This review will focus first on recent advancement of therapeutic strategies, then on the progresses made in preventative approaches, discussing concepts, and problems for the way ahead for the development of vaccines for HIV treatment and prevention.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | | | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, "Istituti Fisioterapici Ospitalieri" , Rome , Italy
| |
Collapse
|