1
|
Chang L, Zhao J, Guo F, Ji H, Zhang L, Jiang X, Wang L. HIV-1 gp41 genetic diversity and enfuvirtide resistance-associated mutations among enfuvirtide-naïve patients in southern China. Virus Res 2020; 292:198215. [PMID: 33166562 DOI: 10.1016/j.virusres.2020.198215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) increasing molecular diversity and emergence of drug resistant mutants remain a major concern in China. Enfuvirtide (ENF/T-20) is the first entry inhibitor used in patients failing highly active antiretroviral therapy (HAART). However, data on HIV-1 gp41genetic diversity and primary ENF resistance-associated mutations among treatment-naïve patients in China is limited. The objective was to identify molecular diversity and ENF resistance patterns of HIV-1 in southern China, using envelope (env) gp41 sequences and bioinformatics tools, which may help optimize antiretroviral therapy. METHODS From November 2018 to January 2019, 439 blood plasma samples from ENF-naïve patients were collected from Shenzhen, Wuhan and Chongqing, of which 396 HIV env regions were sequenced and subtyped, and were performed the analysis of drug resistance-associated mutations (DRMs). RESULTS The main subtypes were circulating recombinant form (CRF) 01_AE (30.6 %) and CRF07_BC (48.7 %). CRF55_01B had been the fourth subtype in the study, and many rare CRFs were observed. Notably, CRF02_AG and CRF_BF strains typically found in Africa and US respectively were identified amongst Chinese patients. Known DRMs were detected in 27.5 % (109/396) of ENF treatment-naïve patients. One major DRM (L44 M), many secondary DRMs (including N126 K, E137 K, S138A), and lots of polymorphisms were found in the study, which have been proved to elevate resistance to ENF. CONCLUSIONS HIV-1 molecular diversity was observed in the study, which indicating that HIV-1 variability is becoming increasingly complex in southern China. A diverse set of primary DRMs discovered in this study described the serious threat to ART, which reminds us the urgent need of timely surveillance of HIV-1 viral diversity and drug resistance in China.
Collapse
Affiliation(s)
- Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Junpeng Zhao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Fei Guo
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lu Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Transmission network characteristics based on env and gag sequences from MSM during acute HIV-1 infection in Beijing, China. Arch Virol 2017; 162:3329-3338. [PMID: 28726130 DOI: 10.1007/s00705-017-3485-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Molecular epidemiology can be used to identify human immunodeficiency virus (HIV) transmission clusters, usually using pol sequence for analysis. In the present study, we explored appropriate parameters to construct a simple network using HIV env and gag sequences instead of pol sequences for constructing a phylogenetic tree and a genetic transmission subnetwork, which were used to identify individuals with many potential transmission links and to explore the evolutionary dynamics of the virus among men who have sex with men (MSM) in Beijing. We investigated 70 acute HIV-1 infections, which consisted of HIV-1 subtype B (15.71%), the circulating recombinant forms CRF01_AE (47.14%), CRF07_BC (21.43%), CRF55_01B (1.43%), and CRF65_cpx (4.29%), and an unknown subtype (10.00%). By exploring the similarities and differences among HIV env, gag and pol sequences in describing the dynamics of the HIV-1 CRF01_AE transmission subnetwork among Beijing MSM, we found that four key points of the env sequences (strains E-2011_BJ.CY_16014, E-2011_BJ.FT_16017, E-2011_BJ.TZ_16064, and E-2011_BJ.XW_16035) contained more transmission information than gag sequences (three key points: strains G-2011_BJ.CY_16014, G-2011_BJ.FT_16017, and G-2011_BJ.XW_16035) and pol sequences (two key points: strains P-2011_BJ.CY_16014 and P-2011_BJ.XW_16035). Although the env and gag sequence results were similar to pol sequences in describing the dynamics of the HIV-1 CRF01_AE transmission subnetwork, we were able to obtain more precise information, allowing identification of key points of subnetwork expansion, based on HIV env and gag sequences instead of pol sequences. Taken together, the key points we found will improve our current understanding of how HIV spreads between MSM populations in Beijing and help to better target preventative interventions for promoting public health.
Collapse
|
3
|
Ahmad N, Ahmad AN, Ahmad SN. Features of Maternal HIV-1 Associated with Lack of Vertical Transmission. Open Virol J 2017; 11:8-14. [PMID: 28458735 PMCID: PMC5388788 DOI: 10.2174/1874357901710011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
HIV-1 is transmitted from mother-to-child (vertical transmission) at an estimated rate of approximately 30% without any antiretroviral therapy (ART). However, administration of ART during pregnancy considerably diminishes the rate of mother-to-child transmission of HIV-1, which has become a standard of perinatal care in HIV-infected pregnant females in developed countries. Moreover, a majority of children born to HIV-infected mothers are uninfected without any ART. In addition, characteristics of HIV-1 and/or cellular factors in the mothers may play a role in influencing or preventing vertical transmission. Several studies, including from our laboratory have characterized the properties of HIV-1 from infected mothers that transmitted HIV-1 to their infants (transmitting mothers) and compared with those mothers that failed to transmit HIV-1 to their infants (non-transmitting mothers) in the absence of ART. One of the striking differences observed was that the non-transmitting mothers harbored a less heterogeneous HIV-1 population than transmitting mothers in the analyzed HIV-1 regions of p17 gag, env V3, vif and vpr. The other significant and distinctive findings were that the functional domains of HIV-1 vif and vpr proteins were less conserved in non-transmitting mothers compared with transmitting mothers. Furthermore, there were differences seen in two important motifs of HIV-1 Gag p17, including conservation of QVSQNY motif and variation in KIEEEQN motif in non-transmitting mothers compared with transmitting mothers. Several of these distinguishing properties of HIV-1 in non-transmitting mothers provide insights in developing strategies for preventing HIV-1 vertical transmission.
Collapse
|
4
|
Nascimento-Brito S, Paulo Zukurov J, Maricato JT, Volpini AC, Salim ACM, Araújo FMG, Coimbra RS, Oliveira GC, Antoneli F, Janini LMR. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS One 2015; 10:e0139037. [PMID: 26413773 PMCID: PMC4587555 DOI: 10.1371/journal.pone.0139037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/19/2023] Open
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Collapse
Affiliation(s)
- Sieberth Nascimento-Brito
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela C. Volpini
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Anna Christina M. Salim
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Flávio M. G. Araújo
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Biosystems Informatics Group, CPqRR, FIOCRUZ, Belo Horizonte, Brazil
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, EPM, UNIFESP, São Paulo, Brazil
- Laboratório de Biocomplexidade e Genômica Evolutiva, EPM, UNIFESP, São Paulo, Brazil
| | - Luiz Mário R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Medicina, EPM, UNIFESP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Berzofsky JA, Franchini G. Human/Simian Immunodeficiency Virus Transmission and Infection at Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Hauptmann N, Pion M, Wehner R, Muñoz-Fernández MÁ, Schmitz M, Voit B, Appelhans D. Potential of Ni(II)-NTA-Modified Poly(ethylene imine) Glycopolymers as Carrier System for Future Dendritic Cell-Based Immunotherapy. Biomacromolecules 2014; 15:957-67. [DOI: 10.1021/bm401845b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N. Hauptmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - M. Pion
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - R. Wehner
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - M.-Á. Muñoz-Fernández
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - M. Schmitz
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - B. Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - D. Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
7
|
Jennes W, Kyongo JK, Vanhommerig E, Camara M, Coppens S, Seydi M, Mboup S, Heyndrickx L, Kestens L. Molecular epidemiology of HIV-1 transmission in a cohort of HIV-1 concordant heterosexual couples from Dakar, Senegal. PLoS One 2012; 7:e37402. [PMID: 22615999 PMCID: PMC3355130 DOI: 10.1371/journal.pone.0037402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/19/2012] [Indexed: 01/25/2023] Open
Abstract
Background A large number of HIV-1 infections in Africa occur in married couples. The predominant direction of intracouple transmission and the principal external origins of infection remain important issues of debate. Methods We investigated HIV-1 transmission in 46 HIV-1 concordant positive couples from Dakar, Senegal. Intracouple transmission was confirmed by maximum-likelihood phylogenetic analysis and pairwise distance comparisons of HIV-1 env gp41 sequences from both partners. Standardized interview data were used to deduce the direction as well as the external sources of the intracouple transmissions. Results Conservative molecular analyses showed linked viruses in 34 (74%) couples, unlinked viruses in 6 (13%) couples, and indeterminate results for 6 (13%) couples. The interview data corresponded completely with the molecular analyses: all linked couples reported internal transmission and all unlinked couples reported external sources of infection. The majority of linked couples (93%) reported the husband as internal source of infection. These husbands most frequently (82%) reported an occasional sexual relationship as external source of infection. Pairwise comparisons of the CD4 count, antiretroviral therapy status, and the proportion of gp41 ambiguous base pairs within transmission pairs correlated with the reported order of infection events. Conclusions In this suburban Senegalese population, a majority of HIV-1 concordant couples showed linked HIV-1 transmission with the husband as likely index partner. Our data emphasize the risk of married women for acquiring HIV-1 as a result of the occasional sexual relationships of their husbands.
Collapse
Affiliation(s)
- Wim Jennes
- Laboratory of Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahmad N. Molecular mechanisms of HIV-1 infection in neonatal target cells. Future Virol 2012. [DOI: 10.2217/fvl.12.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1-infected neonates and infants have a higher viral load and progress to symptomatic AIDS more rapidly than their own infected mothers, as well as other infected adults, with differences in clinical manifestations, recurrent bacterial infections and CNS disorders. Two major reasons have been attributed to this differential HIV pathogenesis and disease; the relative immaturity of the neonate’s immune system and it’s inability to contain the highly replicating and mutating HIV-1, and the more efficient replication of HIV-1 in neonatal cells than in adult target cells. In this context, it has been demonstrated that HIV-1 replicates more efficiently in neonatal (cord) blood monocytes/macrophages and T lymphocytes – including naive and memory T lymphocytes – compared with adult blood cells. We have also determined the mechanisms of the differential HIV-1 replication in cord versus adult blood monocytes/macrophages and T lymphocytes (naive and memory), finding that it was influenced at the level of HIV-1 gene expression. The increased HIV-1 gene expression in neonatal versus adult target cells was regulated by differential expression of host factors, transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9 and Cyclin T1), signal transducers (STAT3 and STAT5A) and cytokines (IL-1β, IL-6 and IL-10). We also showed that nuclear extracts from cord cells interacted with HIV-1 long terminal repeat cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6, to a greater extent when compared with adult peripheral blood mononuclear cell nuclear extracts. Additionally, shRNA of retroviral origin for STAT3 and IL-6 downregulated both their own gene expression as well as that of HIV-1, indicating that these factors influenced the differential expression of HIV-1 genes in cord cells compared with adult cells. In addition, HIV-1 integration plays an important role in differential HIV-1 replication and gene expression in neonatal versus adult cells by integrating into more actively transcribed genes in neonates compared with adults. We characterized 468 HIV-1 integration sites within cord and adult blood T lymphocytes and monocytes/macrophages, including genes coding for cellular components, and those involved with maintenance of the intracellular environment, enzyme regulation, cellular metabolism, catalytic activity and cation transport, as well as several potential transcription factor binding sites at the sites of integration. Additionally, the genes at the integration sites, transcription factors and transcription binding sites were expressed at higher levels in cord than adult target cells. In summary, the increased HIV-1 gene expression and replication in neonatal target cells due to differential expression of host factors all contribute to an increased viral load and faster disease progression in neonates and infants when compared with similar situations in adult patients. Based on these findings, it may be possible to identify new viral and host targets for use in developing strategies for the treatment and prevention of HIV-1.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Immunobiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Ragupathy V, Zhao J, Wood O, Tang S, Lee S, Nyambi P, Hewlett I. Identification of new, emerging HIV-1 unique recombinant forms and drug resistant viruses circulating in Cameroon. Virol J 2011; 8:185. [PMID: 21513545 PMCID: PMC3118203 DOI: 10.1186/1743-422x-8-185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/23/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The HIV epidemic in Cameroon is characterized by a high degree of viral genetic diversity with circulating recombinant forms (CRFs) being predominant. The goal of our study was to determine recent trends in virus evolution and emergence of drug resistance in blood donors and HIV positive patients. METHODOLOGY Blood specimens of 73 individuals were collected from three cities and a few villages in Cameroon and viruses were isolated by co-cultivation with PBMCs. Nested PCR was performed for gag p17 (670 bp) pol (840 bp) and Env gp41 (461 bp) genes. Sequences were phylogenetically analyzed using a reference set of sequences from the Los Alamos database. RESULTS Phylogenetic analysis based on partial sequences revealed that 65% (n = 48) of strains were CRF02_AG, 4% (n = 3) subtype F2, 1% each belonged to CRF06 (n = 1), CRF11 (n = 1), subtype G (n = 1), subtype D (n = 1), CRF22_01A1 (n = 1), and 26% (n = 18) were Unique Recombinant Forms (URFs). Most URFs contained CRF02_AG in one or two HIV gene fragments analyzed. Furthermore, pol sequences of 61 viruses revealed drug resistance in 55.5% of patients on therapy and 44% of drug naïve individuals in the RT and protease regions. Overall URFs that had a primary HIV subtype designation in the pol region showed higher HIV-1 p24 levels than other recombinant forms in cell culture based replication kinetics studies. CONCLUSIONS Our results indicate that although CRF02_AG continues to be the predominant strain in Cameroon, phylogenetically the HIV epidemic is continuing to evolve as multiple recombinants of CRF02_AG and URFs were identified in the individuals studied. CRF02_AG recombinants that contained the pol region of a primary subtype showed higher replicative advantage than other variants. Identification of drug resistant strains in drug-naïve patients suggests that these viruses are being transmitted in the population studied. Our findings support the need for continued molecular surveillance in this region of West Central Africa and investigating impact of variants on diagnostics, viral load and drug resistance assays on an ongoing basis.
Collapse
Affiliation(s)
- Viswanath Ragupathy
- Lab of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ahmad N. Molecular mechanisms of HIV-1 mother-to-child transmission and infection in neonatal target cells. Life Sci 2010; 88:980-6. [PMID: 20888841 DOI: 10.1016/j.lfs.2010.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
HIV-1 mother-to-child transmission (MTCT) occurs mainly at three stages, including prepartum, intrapartum and postpartum. Several maternal factors, including low CD4+ lymphocyte counts, high viral load, immune response, advanced disease status, smoking and abusing drugs have been implicated in an increased risk of HIV-1 MTCT. While use of antiretroviral therapy (ART) during pregnancy has significantly reduced the rate of MTCT, selective transmission of ART resistant mutants has been reported. Based on HIV-1 sequence comparison, the maternal HIV-1 minor genotypes with R5 phenotypes are predominantly transmitted to their infants and initially maintained in the infants with the same properties. Several HIV-1 structural, regulatory and accessory genes were highly conserved following MTCT. In addition, HIV-1 sequences from non-transmitting mothers are less heterogeneous compared with transmitting mothers, suggesting that a higher level of viral heterogeneity influences MTCT. Analysis of the immunologically relevant epitopes showed that variants evolved to escape the immune response that influenced HIV-1 MTCT. Several cytotoxic T-lymphocyte (CTL) epitopes were identified in various HIV-1 genes that were conserved in HIV-1 mother-infant sequences, suggesting a role in MTCT. We have shown that HIV-1 replicates more efficiently in neonatal T-lymphocytes and monocytes/macrophages compared with adult cells, and this differential replication is influenced at the level of HIV-1 gene expression, which was due to differential expression of host factors, including transcriptional activators, signal transducers and cytokines in neonatal than adult cells. In addition, HIV-1 integration occurs in more actively transcribed genes in neonatal compared with adult cells, which may influence HIV-1 gene expression. The increased HIV-1 gene expression and replication in neonatal target cells contribute to a higher viral load and more rapid disease progression in neonates/infants than adults. These findings may identify targets, viral and host, for developing strategies for HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
11
|
Abstract
OBJECTIVE Review the role and mechanism of in utero placental transmission of HIV-1. STUDY DESIGN A thorough review based on a literature search for publications relevant to this subject was performed using relevant search terms. Articles that describe the genetic and pathophysiology of vertical transmission have been acknowledged. The articles pertinent to the topic were selected to support the discussion. RESULTS Vertical transmission may occur through CD4+ endothelial tissues or CD4+ Hofbauer cells. Trophoblasts and villi have CD4 receptors, which make them potential candidates for HIV infection. Placental cytokines and chemokines influence HIV replication in trophoblasts. Genetic analysis of HIV-1 sequences verify the interaction of HIV-1 and placental tissue. The vertical transmission of HIV-1 characterized by selection of genotype variant that escape the mother's immune system. CONCLUSION Placental transmission of HIV-1 is a complex incompletely understood process which requires advanced studies. The available literature provides information with regards to the interactions of placental cells with HIV.
Collapse
|
12
|
Sen S, Tripathy S, Sahni A, Gupta R, Kapila K, Chopra G, Chimanpure VM, Patil AA, Paranjape R. Human immunodeficiency virus type 1 gp 41 mutations in proviral DNA among antiretroviral treatment-naive individuals from India. AIDS Res Hum Retroviruses 2009; 25:521-3. [PMID: 19400735 DOI: 10.1089/aid.2008.0244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HIV-1 gp41 has been identified as an important target for the immune response, for the development of antiviral and vaccine strategies, and for epidemiologic studies. This study describes the HIV-1 env gp41 region mutations, associated with enfuvirtide (ENF) resistance, in proviral DNA from PBMCs in antiretroviral treatment-naive individuals from Pune, India. Twenty-one antiretroviral drug-naive chronically HIV-1-infected individuals were enrolled. The study sequences belonged to subtype C (n = 17), subtype A1 (n = 2), and CRF_AE (n = 2). In subtype B-infected individuals, the various HR1 region substitutions in env gp41 that have been associated with ENF resistance include A30V, L33S/T/V, L34M, G36D/E/S/V, I37T/K/V, V38A/M/E/G, Q39R, Q40H, N42T/D, N43D/K/S, L44M, L45M, R46M, L54M, and Q56K/R as well as N126K and S138A in the HR2 region. The study sequences did not reveal any ENF resistance-associated mutations at env gp41 amino acid positions: 36 to 45. The presence of L54M and Q56K in combination is associated with 5-fold reduced sensitivity to inhibition by ENF. The mutation L54M was seen in seven subtype C and two CRF_AE study sequences. Q56K was observed in a subtype A1 sequence. All the study sequences harbored N42S, a natural polymorphism associated with increased susceptibility to ENF. Of the mutations V38A and N140I, known to provide immunologic gain, the latter was observed in four subtype C sequences. This is the first study from India highlighting the presence of certain mutations in Indian subtype C env gp41, which may play a role in the evolution of subtype-specific variations in the resistance to ENF and associated immune response.
Collapse
Affiliation(s)
- Sourav Sen
- Department of Microbiology, Armed Forces Medical College, Pune, India
| | - S.P. Tripathy
- Department of Clinical Sciences, National AIDS Research Institute, Pune, India
| | - A.K. Sahni
- Department of Pathology and Immunology, Army Hospital, Delhi, India
| | - R.M. Gupta
- Department of Microbiology, Armed Forces Medical College, Pune, India
| | - K. Kapila
- Department of Microbiology, Armed Forces Medical College, Pune, India
| | - G.S. Chopra
- Department of Microbiology, Armed Forces Medical College, Pune, India
| | | | - Ajit A. Patil
- Department of Molecular Virology, National AIDS Research Institute, Pune, India
| | - R.S. Paranjape
- Department of Molecular Virology, National AIDS Research Institute, Pune, India
| |
Collapse
|
13
|
Mehta R, Ramakrishnan R, Doktor K, Sundaravaradan V, Ahmad N. Genetic characterization of HIV type 1 long terminal repeat following vertical transmission. AIDS Res Hum Retroviruses 2008; 24:437-45. [PMID: 18327987 DOI: 10.1089/aid.2007.0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) sequences were characterized from six mother-infant pairs following vertical transmission. The LTR sequences exhibited a low degree of heterogeneity within mothers, within infants, and between epidemiologically linked mother-infant pairs. However, LTR sequences were more heterogeneous between epidemiologically unlinked individuals compared with linked mother-infant pairs. These data were further supported by low estimates of genetic diversity and clustering of each mother-infant pair's sequences into a separate subtree as well as the presence of common signature sequences between mother-infant pairs. The functional domains essential for LTR (promoter) function, including the promoter (TATAA), enhancers (three Sp-I and two NF-kappaB), the modulatory regions (two AP-I sites, two NFAT, one NF-IL6 site, one Ets-1, and one USF-1), and the TAR region were generally conserved among mother-infant pairs. Taken together, limited heterogeneity and conservation of functional domains in the LTR following vertical transmission support the notion that a functional LTR is critical in viral replication and pathogenesis in HIV-1-infected mothers and their infected infants.
Collapse
Affiliation(s)
- Roshni Mehta
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Rajesh Ramakrishnan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Katherine Doktor
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Vasudha Sundaravaradan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
14
|
Ahmad N. Molecular Mechanisms of HIV-1 Vertical Transmission and Pathogenesis in Infants. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:453-508. [DOI: 10.1016/s1054-3589(07)56015-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Ramakrishnan R, Ahmad N. Derivation of primary sequences and secondary structures of rev responsive element from HIV-1 infected mothers and infants following vertical transmission. Virology 2006; 359:201-11. [PMID: 17045321 DOI: 10.1016/j.virol.2006.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/15/2022]
Abstract
We have characterized the primary RRE sequences of HIV-1, including in vivo genetic variation and functional motifs required for Rev-RRE interactions as well as evaluated the RNA secondary structures of RRE derived from five mother-infant pairs following vertical transmission. Multiple (157) RRE sequences derived from mother-infant pairs showed that primary nucleotide sequences of RRE were highly conserved with a low degree of viral heterogeneity following vertical transmission. We found that the RRE sequences from mothers and infants folded and retained all the essential stem-loop formation required for Rev-RRE interactions. More importantly, a primary 9-nucleotide (5'-CACTATGGG-3') RRE sequence in the stem-loop B that is required for optimal Rev recognition and must be presented as a stem-bulge-stem structure was highly conserved in most of the sequences. The domains required for RRE-host protein interactions were also conserved in most of the RRE sequences. Taken together, the primary RRE sequences in the context of secondary structures were maintained and the Rev-RRE interaction domains were conserved following vertical transmission, which is consistent with a crucial role of RRE in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Immunobiology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | |
Collapse
|