1
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
2
|
Prokšová PG, Lipov J, Zelenka J, Hunter E, Langerová H, Rumlová M, Ruml T. Mason-Pfizer Monkey Virus Envelope Glycoprotein Cycling and Its Vesicular Co-Transport with Immature Particles. Viruses 2018; 10:E575. [PMID: 30347798 PMCID: PMC6212865 DOI: 10.3390/v10100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
Collapse
Affiliation(s)
- Petra Grznárová Prokšová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
- Imaging methods core facility at BIOCEV, Faculty of Science, Charles University, 252 50 Prague, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Eric Hunter
- Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hana Langerová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| |
Collapse
|
3
|
Sinha A, Johnson WE. Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous Env gene. Curr Opin Virol 2017; 25:105-112. [PMID: 28837888 DOI: 10.1016/j.coviro.2017.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/08/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022]
Abstract
Due to recombination, different regions of a retrovirus genome can have distinct phylogenetic histories. The RD114-and-D-type-retrovirus (RDR) interference group provides an extreme example: the RDR group comprises a variety of taxonomically distinct retroviruses, isolated from diverse mammalian and avian hosts, that share a homologous env gene and use the same cell-surface entry receptor. RDR env homologs are also found among ancient endogenous retrovirus (ERV) sequences, including the syncytin genes of humans and rabbits, indicating that RDR Env glycoproteins have likely mediated endogenization on multiple occasions in diverse vertebrate lineages. The distribution of RDR env among exogenous and endogenous retroviruses indicates that it has been swapped between viruses many times, and that it likely facilitated multiple cross-species transmission events spanning millions of years of vertebrate evolution.
Collapse
Affiliation(s)
- Anindita Sinha
- Biology Department, Boston College, 355 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Welkin E Johnson
- Biology Department, Boston College, 355 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| |
Collapse
|
4
|
Walsh SR, de Jong JG, van Vloten JP, Gerpe MCR, Santry LA, Wootton SK. Truncation of the enzootic nasal tumor virus envelope protein cytoplasmic tail increases Env-mediated fusion and infectivity. J Gen Virol 2017; 98:108-120. [PMID: 27902399 DOI: 10.1099/jgv.0.000654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzootic nasal tumor virus (ENTV) and Jaagsiekte sheep retrovirus (JSRV) are highly related ovine betaretroviruses that induce nasal and lung tumours in small ruminants, respectively. While the ENTV and JSRV envelope (Env) glycoproteins mediate virus entry using the same cellular receptor, the glycosylphosphatidylinositol-linked protein hyaluronoglucosaminidase, ENTV Env pseudovirions mediate entry into cells from a much more restricted range of species than do JSRV Env pseudovirions. Unlike JSRV Env, ENTV Env does not induce cell fusion at pH 5.0 or above, but rather requires a much lower pH (4.0-4.5) for fusion to occur. The cytoplasmic tail of retroviral envelope proteins is a key modulator of envelope-mediated fusion and pseudotype efficiency, especially in the context of virions composed of heterologous Gag proteins. Here we report that progressive truncation of the ENTV Env cytoplasmic tail improves transduction efficiency of pseudotyped retroviral vectors and that complete truncation of the ENTV Env cytoplasmic tail increases transduction efficiency to wild-type JSRV Env levels by increasing fusogenicity without affecting sensitivity to inhibition by lysosomotropic agents, subcellular localization or efficiency of inclusion into virions. Truncation of the cytoplasmic domain of ENTV Env resulted in a significant advantage in viral entry into all cell types tested, including foetal ovine lung and nasal cells. Taken together, we demonstrate that the cytoplasmic tail modulates the fusion activity of the ENTV Env protein and that truncation of this region enhances Eenv-mediated entry into target cells.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jondavid G de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Wootton
- Present address: McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
6
|
Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Escape from R-peptide deletion in a γ-retrovirus. Virology 2011; 418:85-92. [PMID: 21835422 DOI: 10.1016/j.virol.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/17/2011] [Accepted: 07/15/2011] [Indexed: 11/15/2022]
Abstract
The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.
Collapse
Affiliation(s)
- Irene C Schneider
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission.
Collapse
|
8
|
Abstract
A mandatory step in the formation of an infectious retroviral particle is the acquisition of its envelope glycoprotein (Env). This step invariably occurs by Env positioning itself in the host membrane at the location of viral budding and being incorporated along with the host membrane into the viral particle. In some ways, this step of the viral life cycle would appear to be imprecise. There is no specific sequence in Env or in the retroviral structural protein, Gag, that is inherently required for the production of an infectious Env-containing particle. Additionally, Env-defective proviruses can efficiently produce infectious particles with any of a number of foreign retroviral Env glycoproteins or even glycoproteins from unrelated viral families, a process termed pseudotyping. However, mounting evidence suggests that Env incorporation is neither passive nor random. Rather, several redundant mechanisms appear to contribute to the carefully controlled process of Env acquisition, many of which are apparently used by a wide variety of enveloped viruses. This review presents and discusses the evidence for these different mechanisms contributing to incorporation.
Collapse
Affiliation(s)
- Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, 65211, USA.
| |
Collapse
|
9
|
Lucas TM, Lyddon TD, Grosse SA, Johnson MC. Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology 2010; 405:548-55. [PMID: 20655565 DOI: 10.1016/j.virol.2010.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/24/2010] [Accepted: 06/08/2010] [Indexed: 12/12/2022]
Abstract
The cytoplasmic tail domain (CTD) of retroviral envelope (Env) proteins has been implicated in modulating Env incorporation into viral particles. We generated a panel of murine leukemia virus (MLV) Env mutants and analyzed their ability to be recruited to human immunodeficiency virus-1 (HIV-1) assembly sites. Surprisingly, the entire CTD was dispensable for recruitment to assembly sites, but a mutation that disrupted the furin cleavage site in Env abolished recruitment. To determine if MLV Env can show selectivity for homologous assembly sites, cells were co-transfected with both HIV-1 and MLV assembly components along with each MLV Env construct and assayed for infectious particle production. MLV Env selectively formed infectious particles with the MLV components at the expense of infectious HIV-1 infectious particle production, but truncation of the CTD progressively reduced this selectivity. Collectively these data suggest that there are two separable mechanisms that govern MLV Env recruitment to viral assembly sites.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri- School of Medicine, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
10
|
Reconstitution of the ancestral glycoprotein of human endogenous retrovirus k and modulation of its functional activity by truncation of the cytoplasmic domain. J Virol 2009; 83:12790-800. [PMID: 19812154 DOI: 10.1128/jvi.01368-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endogenous retroviruses present in the human genome provide a rich record of ancient infections. All presently recognized elements, including the youngest and most intact proviruses of the human endogenous retrovirus K(HML-2) [HERV-K(HML-2)] family, have suffered postinsertional mutations during their time of chromosomal residence, and genes encoding the envelope glycoprotein (Env) have not been spared these mutations. In this study, we have, for the first time, reconstituted an authentic Env of a HERV-K(HML-2) provirus by back mutation of putative postinsertional amino acid changes of the protein encoded by HERV-K113. Aided by codon-optimized expression, we demonstrate that the reconstituted Env regained its ability to be incorporated into retroviral particles and to mediate entry. The original ancient HERV-K113 Env was synthesized as a moderately glycosylated gp95 precursor protein cleaved into surface and transmembrane (TM) subunits. Of the nine N-linked oligosaccharides, four are part of the TM subunit, contributing 15 kDa to its apparent molecular mass of 41 kDa. The carbohydrates, as well as the cytoplasmic tail, are critical for efficient intracellular trafficking, processing, stability, and particle incorporation. Whereas deletions of the carboxy-terminal 6 residues completely abrogated cleavage and virion association, more extensive truncations slightly enhanced incorporation but dramatically increased the ability to mediate entry of pseudotyped lentiviruses. Although the first HERV-K(HML-2) elements infected human ancestors about 30 million years ago, our findings indicate that their glycoproteins are in most respects remarkably similar to those of classical contemporary retroviruses and can still mediate efficient entry into mammalian cells.
Collapse
|
11
|
Rozenberg-Adler Y, Conner J, Aguilar-Carreno H, Chakraborti S, Dimitrov DS, Anderson WF. Membrane-proximal cytoplasmic domain of Moloney murine leukemia virus envelope tail facilitates fusion. Exp Mol Pathol 2007; 84:18-30. [PMID: 18222422 DOI: 10.1016/j.yexmp.2007.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 11/14/2007] [Indexed: 01/10/2023]
Abstract
Removal of the R peptide (residues 617-632) from the Moloney murine leukemia virus (MoMuLV) envelope protein (Env) cytoplasmic tail potentiates fusion. We examined the role of the membrane-proximal cytoplasmic domain (598-616) of the MoMuLV Env in the Env-mediated membrane fusion and incorporation. The Env truncated at 616 exhibits maximum fusogenicity in cell-to-cell fusion assay. By comparison, full tail Env (632) and the Env truncated to residue 601 mediated fusion at 40%. The Envs truncated to residues 598 or 595 are not fusogenic. Progressive cytoplasmic tail truncation correlated with decreased Env incorporation into virions. Substitution of the domain 598-616 with an amphiphilic alpha-helix from melittin results in maximally fusogenic Envs that efficiently incorporated into transduction competent virions. However, substitution of the domain 598-616 with random or hydrophilic sequences caused loss of the Env fusogenicity and titer while retaining incorporation. Further, a secondary structure prediction analysis of 27 unrelated Env cytoplasmic tails indicates a common (23/27) propensity for an amphiphilic alpha-helical domain at immediate proximity to the viral membrane. These results support the suggestion that viral fusion is enhanced by a membrane-proximal cytoplasmic amphiphilic alpha-helix in Env tail. The model of its action is proposed.
Collapse
Affiliation(s)
- Yanina Rozenberg-Adler
- San Diego Cancer Research Institute, 1200 Garden View, Suite 200, Encinitas, CA 92024, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Cousens C, Maeda N, Murgia C, Dagleish MP, Palmarini M, Fan H. In vivo tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not full-length orfX open reading frame. Virology 2007; 367:413-21. [PMID: 17610928 PMCID: PMC2065845 DOI: 10.1016/j.virol.2007.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/15/2007] [Accepted: 06/07/2007] [Indexed: 12/15/2022]
Abstract
Jaagsiekte retrovirus (JSRV) causes ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep. The envelope (Env) glycoprotein protein of JSRV functions as a dominant oncoprotein in vitro and in vivo. An SH2 binding domain (YXXM) in the cytoplasmic tail of the JSRV Env is one of the main determinants of viral transformation at least in vitro. In these studies, we report the first in vivo tests of site-specific mutants of JSRV in their natural host, the sheep. We show that, in vivo, JSRV(21) with the cytoplasmic tail YXXM mutated to DXXM did not cause disease nor detectable infection, indicating that this motif is absolutely required for virus replication and possibly transformation in vivo. In contrast, mutation of the JSRV open reading frame orfX, for which no function has yet been attributed, did not alter the disease induced by JSRV(21).
Collapse
Affiliation(s)
- Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Bouard D, Sandrin V, Boson B, Nègre D, Thomas G, Granier C, Cosset FL. An acidic cluster of the cytoplasmic tail of the RD114 virus glycoprotein controls assembly of retroviral envelopes. Traffic 2007; 8:835-47. [PMID: 17547695 DOI: 10.1111/j.1600-0854.2007.00581.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral core proteins, Gag and envelope (Env) glycoproteins are expressed from distinct cellular areas and therefore need to encounter to assemble infectious particles. The intrinsic cell localisation properties of either viral component or their capacity to mutually interact determines the assembly of infectious particles. Here, we address how Env determinants and cellular sorting proteins allow the Env derived from gamma retroviruses, murine leukemia virus (MLV) and RD114, to travel to or from late endosomes (LE), which may represent the Env assembly site of retroviruses in some cells. The individual expression of MLV Env resulted in its accumulation in LE in contrast to RD114 Env that required the presence of gamma retroviral Gag proteins. To discriminate between intrinsic intracellular Env localisation and gamma retroviral Gag/Env interactions in influencing Env viral incorporation, we studied Env assembly on heterologous lentiviral particles on which they are passively recruited. We found that an acidic cluster present at the C-terminus of the RD114 Env cytoplasmic tail determines its sub-cellular localisation and retrograde transport. Mutation of this motif induced late endosomal concentration of the RD114 Env, correlating with increased viral incorporation and infectivity. Reciprocally, the reinforcement of a poorly functional acidic motif in the MLV Env resulted in a marked decrease of its late endosomal localisation, leading to weakly infectious lentiviral particles with low Env densities. Finally, through upregulation versus downregulation of its cellular expression, we show that phosphofurin acidic-cluster-sorting protein 1 (PACS-1) controls the function of the RD114 Env acidic cluster, assigning to this cellular effector a crucial role in modulation of Env assembly of some retroviruses.
Collapse
Affiliation(s)
- David Bouard
- Université de Lyon, (UCB-Lyon1), IFR128, Lyon, F-69007, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Camus G, Segura-Morales C, Molle D, Lopez-Vergès S, Begon-Pescia C, Cazevieille C, Schu P, Bertrand E, Berlioz-Torrent C, Basyuk E. The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol Biol Cell 2007; 18:3193-203. [PMID: 17538020 PMCID: PMC1949356 DOI: 10.1091/mbc.e06-12-1147] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.
Collapse
Affiliation(s)
- Grégory Camus
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Carolina Segura-Morales
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Dorothee Molle
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Sandra Lopez-Vergès
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Christina Begon-Pescia
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Chantal Cazevieille
- Centre Régional d'Imagerie Cellulaire/Institut Universitaire de Recherché Clinique, 34093 Montpellier, France; and
| | - Peter Schu
- University of Göttingen, Center for Biochemistry and Molecular Cell Biology, Biochemistry II, 37073 Göttingen, Germany
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Clarisse Berlioz-Torrent
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| |
Collapse
|