1
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
2
|
Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021; 105:4855-4878. [PMID: 34086116 PMCID: PMC8175935 DOI: 10.1007/s00253-021-11331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Abstract Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. Key points • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.
Collapse
|
3
|
Cullin E3 ligases and their rewiring by viral factors. Biomolecules 2014; 4:897-930. [PMID: 25314029 PMCID: PMC4279162 DOI: 10.3390/biom4040897] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity.
Collapse
|
4
|
HIV-1 induces telomerase activity in monocyte-derived macrophages, possibly safeguarding one of its reservoirs. J Virol 2012; 86:10327-37. [PMID: 22787205 DOI: 10.1128/jvi.01495-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monocyte-derived macrophages (MDM) are widely distributed in all tissues and organs, including the central nervous system, where they represent the main part of HIV-infected cells. In contrast to activated CD4(+) T lymphocytes, MDM are resistant to cytopathic effects and survive HIV infection for a long period of time. The molecular mechanisms of how HIV is able to persist in macrophages are not fully elucidated yet. In this context, we have studied the effect of in vitro HIV-1 infection on telomerase activity (TA), telomere length, and DNA damage. Infection resulted in a significant induction of TA. This increase was directly proportional to the efficacy of HIV infection and was found in both nuclear and cytoplasmic extracts, while neither UV light-inactivated HIV nor exogenous addition of the viral protein Tat or gp120 affected TA. Furthermore, TA was not modified during monocyte-macrophage differentiation, MDM activation, or infection with vaccinia virus. HIV infection did not affect telomere length. However, HIV-infected MDM showed less DNA damage after oxidative stress than noninfected MDM, and this resistance was also increased by overexpressing telomerase alone. Taken together, our results suggest that HIV induces TA in MDM and that this induction might contribute to cellular protection against oxidative stress, which could be considered a viral strategy to make macrophages better suited as longer-lived, more resistant viral reservoirs. In the light of the clinical development of telomerase inhibitors as anticancer therapeutics, inhibition of TA in HIV-infected macrophages might also represent a novel therapeutic target against viral reservoirs.
Collapse
|
5
|
Li G, Elder RT, Dubrovsky L, Liang D, Pushkarsky T, Chiu K, Fan T, Sire J, Bukrinsky M, Zhao RY. HIV-1 replication through hHR23A-mediated interaction of Vpr with 26S proteasome. PLoS One 2010; 5:e11371. [PMID: 20614012 PMCID: PMC2894085 DOI: 10.1371/journal.pone.0011371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/26/2010] [Indexed: 01/07/2023] Open
Abstract
HIV-1 Vpr is a virion-associated protein. Its activities link to viral pathogenesis and disease progression of HIV-infected patients. In vitro, Vpr moderately activates HIV-1 replication in proliferating T cells, but it is required for efficient viral infection and replication in vivo in non-dividing cells such as macrophages. How exactly Vpr contributes to viral replication remains elusive. We show here that Vpr stimulates HIV-1 replication at least in part through its interaction with hHR23A, a protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation. The Vpr-proteasome interaction was initially discovered in fission yeast, where Vpr was shown to associate with Mts4 and Mts2, two 19S-associated proteins. The interaction of Vpr with the 19S subunit of the proteasome was further confirmed in mammalian cells where Vpr associates with the mammalian orthologues of fission yeast Mts4 and S5a. Consistently, depletion of hHR23A interrupts interaction of Vpr with proteasome in mammalian cells. Furthermore, Vpr promotes hHR23A-mediated protein-ubiquitination, and down-regulation of hHR23A using RNAi significantly reduced viral replication in non-proliferating MAGI-CCR5 cells and primary macrophages. These findings suggest that Vpr-proteasome interaction might counteract certain host restriction factor(s) to stimulate viral replication in non-dividing cells.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert T. Elder
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Larisa Dubrovsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Dong Liang
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Pushkarsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Karen Chiu
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tao Fan
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Josephine Sire
- Pathogénie des Infections à Lentivirus, INSERM U372, Marseille, France
| | - Michael Bukrinsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Richard Y. Zhao
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Oxidative stress induced by HIV-1 F34IVpr in Schizosaccharomyces pombe is one of its multiple functions. Exp Mol Pathol 2010; 88:38-44. [DOI: 10.1016/j.yexmp.2009.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 11/17/2022]
|
7
|
Romani B, Engelbrecht S. Human immunodeficiency virus type 1 Vpr: functions and molecular interactions. J Gen Virol 2009; 90:1795-1805. [PMID: 19458171 DOI: 10.1099/vir.0.011726-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is an accessory protein that interacts with a number of cellular and viral proteins. The functions of many of these interactions in the pathogenesis of HIV-1 have been identified. Deletion of the vpr gene reduces the virulence of HIV-1 dramatically, indicating the importance of this protein for the virus. This review describes the current findings on several established functions of HIV-1 Vpr and some possible roles proposed for this protein. Because Vpr exploits cellular proteins and pathways to influence the biology of HIV-1, understanding the functions of Vpr usually involves the study of cellular pathways. Several functions of Vpr are attributed to the virion-incorporated protein, but some of them are attributed to the expression of Vpr in HIV-1-infected cells. The structure of Vpr may be key to understanding the variety of its interactions. Due to the critical role of Vpr in HIV-1 pathogenicity, study of the interactions between Vpr and cellular proteins may help us to understand the mechanism(s) of HIV-1 pathogenicity.
Collapse
Affiliation(s)
- Bizhan Romani
- Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Susan Engelbrecht
- National Health Laboratory Services, Tygerberg 7505, South Africa.,Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| |
Collapse
|
8
|
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res 2009; 7:178-83. [PMID: 19275587 DOI: 10.2174/157016209787581436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is engaged in dynamic and antagonistic interactions with host cells. Once infected by HIV-1, host cells initiate various antiviral strategies, such as innate antiviral defense mechanisms, to counteract viral invasion. In contrast, the virus has different strategies to suppress these host responses to infection. The final balance between these interactions determines the outcome of the viral infection and disease progression. Recent findings suggest that HIV-1 viral protein R (Vpr) interacts with some of the host innate antiviral factors, such as heat shock proteins, and plays an active role as a viral pathogenic factor. Cellular heat stress response factors counteract Vpr activities and inhibit HIV replication. However, Vpr overcomes these heat-stress-like responses by preventing heat shock factor-1 (HSF-1)-mediated activation of heat shock proteins. In this review, we will focus on the virus-host interactions involving Vpr. In addition to heat stress response proteins, we will discuss interactions of Vpr with other proteins, such as EF2 and Skp1/GSK3, their involvements in cellular responses to Vpr, as well as strategies to develop novel antiviral therapies aimed at enhancing anti-Vpr responses of the host cell.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
9
|
Huard S, Chen M, Burdette KE, Fenyvuesvolgyi C, Yu M, Elder RT, Zhao RY. HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis. Cell Res 2008; 18:961-73. [DOI: 10.1038/cr.2008.272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
10
|
Huard S, Elder RT, Liang D, Li G, Zhao RY. Human immunodeficiency virus type 1 Vpr induces cell cycle G2 arrest through Srk1/MK2-mediated phosphorylation of Cdc25. J Virol 2008; 82:2904-17. [PMID: 18160429 PMCID: PMC2259012 DOI: 10.1128/jvi.01098-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 11/28/2007] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G(2) arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G(2) arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G(2)/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G(2) arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G(2) delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G(2)/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G(2) arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G(2) arrest at least in part through a Srk1/MK2-mediated mechanism.
Collapse
Affiliation(s)
- Sylvain Huard
- Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF700A, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Derouet-Hümbert E, Drăgan CA, Hakki T, Bureik M. ROS production by adrenodoxin does not cause apoptosis in fission yeast. Apoptosis 2007; 12:2135-42. [PMID: 17885803 DOI: 10.1007/s10495-007-0133-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously showed that production of reactive oxygen species (ROS) caused by overexpression of the mitochondrial electron transfer protein adrenodoxin (Adx) induces apoptosis in mammalian cells. In the fission yeast Schizosaccharomyces pombe, ROS are also produced in cells that undergo an apoptotic-like cell death, but it is not yet clear whether they are actually causative for this phenomenon or whether they are merely produced as a by-product. Therefore, the purpose of this study was to trigger mitochondrial ROS production in fission yeast by overexpression of either wildtype Adx (Adx-WT) or of several activated Adx mutants and to investigate its consequences. It was found that strong expression of either Adx-WT or Adx-S112W did not produce any ROS, while Adx-D113Y caused a twofold and Adx1-108 a threefold increase in ROS formation as compared to basal levels. However, no typical apoptotic markers or decreased viability could be observed in these strains. Since we previously observed that an increase in mitochondrial ROS formation of about 60% above basal levels is sufficient to strongly induce apoptosis in mammalian cells, we conclude that S. pombe is either very robust to mitochondrial ROS production or does not undergo apoptotic cell death in response to mitochondrial ROS at all.
Collapse
Affiliation(s)
- Evi Derouet-Hümbert
- Department of Biochemistry, Building A 2-4, Saarland University, 66041, Saarbrucken, Germany
| | | | | | | |
Collapse
|
12
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. Mol Med 2007. [PMID: 17622316 DOI: 10.2119/2007-00004.liang] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
13
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:229-39. [PMID: 17622316 PMCID: PMC1906686 DOI: 10.2119/2007–00004.liang] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/25/2007] [Indexed: 11/06/2022]
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zsigmond Benko
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Agbottah
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Address correspondence and reprint requests to Richard Y. Zhao, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF700A, Baltimore, MD 21201. Phone: 410-796-6301; Fax 410-706-6303; E-mail:
, or Michael Bukrinsky, Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037. Phone: 202-994-2036; Fax: 410-706-6303; E-mail:
| |
Collapse
|
14
|
Zhao RY, Elder RT, Bukrinsky M. Interactions of HIV-1 viral protein R with host cell proteins. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:233-60. [PMID: 17586317 DOI: 10.1016/s1054-3589(07)55007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|