1
|
Gomes YCP, Silva MTT, Leite ACCB, Lima MASD, Araújo AQC, Silva Filho IL, Vicente ACP, Espíndola ODM. Polymorphisms in HTLV-1 Tax-responsive elements in HTLV-1-associated myelopathy/tropical spastic paraparesis patients are associated with reduced proviral load but not with disease progression. J Gen Virol 2021; 102. [PMID: 34494950 DOI: 10.1099/jgv.0.001649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) provirus expression is mainly directed by Tax-responsive elements (TRE) within the long terminal repeats (LTR). Mutations in TRE can reduce provirus expression and since a high proviral load (PVL) is a risk factor for the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we evaluated polymorphisms in the 5' LTR and the association with PVL and disease progression. HTLV-1 LTR and tax sequences derived from asymptomatic carriers (AC) and HAM/TSP patients followed in a longitudinal study were analysed according to PVL and clinical severity. Individuals infected with HTLV-1 presenting the canonical TRE, considering strain ATK-1 as the consensus, displayed sustained higher PVL. By contrast, an LTR A125G mutation in TRE was associated with slightly reduced PVL only in HAM/TSP patients, although it did not influence the speed of disease progression. Moreover, this polymorphism was frequent in Latin American strains of the HTLV-1 Cosmopolitan Transcontinental subtype. Therefore, polymorphisms in the 5' TRE of HTLV-1 may represent one of the factors influencing PVL in HAM/TSP patients, especially in the Latin American population. Indeed, higher PVL in the peripheral blood has been associated with an increased inflammatory activity in the spinal cord and to a poorer prognosis in HAM/TSP. However, this event was not associated with TRE polymorphisms.
Collapse
Affiliation(s)
- Yago Côrtes Pinheiro Gomes
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Marcus Tulius Teixeira Silva
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Ana Claudia Celestino Bezerra Leite
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Marco Antonio Sales Dantas Lima
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Abelardo Queiroz Campos Araújo
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Isaac Lima Silva Filho
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Ana Carolina Paulo Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | - Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| |
Collapse
|
2
|
Pluta A, Willems L, Douville RN, Kuźmak J. Effects of Naturally Occurring Mutations in Bovine Leukemia Virus 5'-LTR and Tax Gene on Viral Transcriptional Activity. Pathogens 2020; 9:pathogens9100836. [PMID: 33066207 PMCID: PMC7656303 DOI: 10.3390/pathogens9100836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/28/2023] Open
Abstract
Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis (EBL). The long terminal repeat (LTR) plays an indispensable role in viral gene expression. The BLV Tax protein acts as the main transactivator of LTR-driven transcription of BLV viral genes. The aim of this study was to analyze mutations in the BLV LTR region and tax gene to determine their association with transcriptional activity. LTRs were obtained from one hundred and six BLV isolates and analyzed for their genetic variability. Fifteen variants were selected and characterized based on mutations in LTR regulatory elements, and further used for in vitro transcription assays. Reporter vectors containing the luciferase gene under the control of each variant BLV promoter sequence, in addition to variant Tax expression vectors, were constructed. Both types of plasmids were used for cotransfection of HeLa cells and the level of luciferase activity was measured as a proxy of transcriptional activity. Marked differences in LTR promoter activity and Tax transactivation activity were observed amongst BLV variants. These results demonstrate that mutations in both the BLV LTR and tax gene can affect the promoter activity, which may have important consequences on proviral load, viral fitness, and transmissibility in BLV-infected cattle.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland;
- Correspondence:
| | - Luc Willems
- Molecular and Cellular Epigenetics (Interdisciplinary Cluster for Applied Genoproteomics, GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000 Liege, Belgium;
| | - Renée N. Douville
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada;
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland;
| |
Collapse
|
3
|
Regulation of Expression and Latency in BLV and HTLV. Viruses 2020; 12:v12101079. [PMID: 32992917 PMCID: PMC7601775 DOI: 10.3390/v12101079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotrophic virus type 1 (HTLV-1) and Bovine leukemia virus (BLV) belong to the Deltaretrovirus genus. HTLV-1 is the etiologic agent of the highly aggressive and currently incurable cancer adult T-cell leukemia (ATL) and a neurological disease HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). BLV causes neoplastic proliferation of B cells in cattle: enzootic bovine leucosis (EBL). Despite the severity of these conditions, infection by HTLV-1 and BLV appear in most cases clinically asymptomatic. These viruses can undergo latency in their hosts. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infection, as well as for pathogenesis in vivo. In this review, we will present the mechanisms that control proviral activation and retroviral latency in deltaretroviruses, in comparison with other exogenous retroviruses. The 5′ long terminal repeats (5′-LTRs) play a main role in controlling viral gene expression. While the regulation of transcription initiation is a major mechanism of silencing, we discuss topics that include (i) the epigenetic control of the provirus, (ii) the cis-elements present in the LTR, (iii) enhancers with cell-type specific regulatory functions, (iv) the role of virally-encoded transactivator proteins, (v) the role of repressors in transcription and silencing, (vi) the effect of hormonal signaling, (vii) implications of LTR variability on transcription and latency, and (viii) the regulatory role of non-coding RNAs. Finally, we discuss how a better understanding of these mechanisms may allow for the development of more effective treatments against Deltaretroviruses.
Collapse
|
4
|
Genetic variability of the U5 and downstream sequence of major HIV-1 subtypes and circulating recombinant forms. Sci Rep 2020; 10:13214. [PMID: 32764600 PMCID: PMC7411029 DOI: 10.1038/s41598-020-70083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
The critical role of the regulatory elements at the 5′ end of the HIV-1 genome in controlling the life cycle of HIV-1 indicates that this region significantly influences virus fitness and its biological properties. In this study, we performed a detailed characterization of strain-specific variability of sequences from the U5 to upstream of the gag gene start codon of diverse HIV-1 strains by using next-generation sequencing (NGS) techniques. Overall, we found that this region of the HIV-1 genome displayed a low degree of intra-strain variability. On the other hand, inter-strain variability was found to be as high as that reported for gag and env genes (13–17%). We observed strain-specific single point and clustered mutations in the U5, PBS, and gag leader sequences (GLS), generating potential strain-specific transcription factor binding sites (TFBS). Using an infrared gel shift assay, we demonstrated the presence of potential TFBS such as E-box in CRF22_01A, and Stat 6 in subtypes A and G, as well as in their related CRFs. The strain-specific variation found in the sequence corresponding at the RNA level to functional domains of the 5ʹ UTR, could also potentially impact the secondary/tertiary structural rearrangement of this region. Thus, the variability observed in this 5′ end of the genomic region of divergent HIV-1 strains strongly suggests that functions of this region might be affected in a strain-specific manner. Our findings provide new insights into DNA–protein interactions that regulate HIV-1 replication and the influence of strain characterization on the biology of HIV-1 infection.
Collapse
|
5
|
Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, Zhang L, Zhang L, Zeng J. DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics 2020; 35:1660-1667. [PMID: 30295703 DOI: 10.1093/bioinformatics/bty842] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Human immunodeficiency virus type 1 (HIV-1) genome integration is closely related to clinical latency and viral rebound. In addition to human DNA sequences that directly interact with the integration machinery, the selection of HIV integration sites has also been shown to depend on the heterogeneous genomic context around a large region, which greatly hinders the prediction and mechanistic studies of HIV integration. RESULTS We have developed an attention-based deep learning framework, named DeepHINT, to simultaneously provide accurate prediction of HIV integration sites and mechanistic explanations of the detected sites. Extensive tests on a high-density HIV integration site dataset showed that DeepHINT can outperform conventional modeling strategies by automatically learning the genomic context of HIV integration from primary DNA sequence alone or together with epigenetic information. Systematic analyses on diverse known factors of HIV integration further validated the biological relevance of the prediction results. More importantly, in-depth analyses of the attention values output by DeepHINT revealed intriguing mechanistic implications in the selection of HIV integration sites, including potential roles of several DNA-binding proteins. These results established DeepHINT as an effective and explainable deep learning framework for the prediction and mechanistic study of HIV integration. AVAILABILITY AND IMPLEMENTATION DeepHINT is available as an open-source software and can be downloaded from https://github.com/nonnerdling/DeepHINT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - An Xiao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Sai Zhang
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
7
|
Wang XF, Lin YZ, Li Q, Liu Q, Zhao WW, Du C, Chen J, Wang X, Zhou JH. Genetic Evolution during the development of an attenuated EIAV vaccine. Retrovirology 2016; 13:9. [PMID: 26842878 PMCID: PMC4738788 DOI: 10.1186/s12977-016-0240-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 08/30/2023] Open
Abstract
Background The equine infectious anemia virus (EIAV) vaccine is the only attenuated lentiviral vaccine applied on a large scale that has been shown to be effective in controlling the prevalence of EIA in China. This vaccine was developed by successive passaging of a field-isolated virulent strain in different hosts and cultivated cells. To explore the molecular basis for the phenotype alteration of this vaccine strain, we systematically analyzed its genomic evolution during vaccine development. Results Sequence analysis revealed that the genetic distance between the wild-type strain and six representative strains isolated from key development stages gradually increased with the number of passages. Env gene, but not gag and pol, showed a clear evolutionary flow similar to that of the whole genomes of different generations during the attenuation. Stable mutations were identified in multiple regions of multiple genes along with virus passaging. The adaption of the virus to the growth environment of cultured cells with accumulated genomic and genetic variations was positively correlated with the reduction in pathogenicity and rise of immunogenicity. Statistical analyses revealed significant differences in the frequency of the most stable mutations between in vivo and ex vivo-adapted strains and between virulent and attenuated strains. Conclusions These data indicate that EIAV evolution during vaccine development generated an accumulation of mutations under the selective drive force, which helps to better understand the molecular basis of lentivirus pathogenicity and immunogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0240-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qiang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Weike Biotechnology Development Company, Harbin, China.
| | - Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Pharmaceutical Group Biovaccine Co., Harbin, 150069, China.
| |
Collapse
|
8
|
Bovine leukemia virus: a major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol 2014; 163:103-14. [PMID: 25554478 DOI: 10.1016/j.vetimm.2014.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Bovine leukemia virus (BLV) infection is widespread in the US dairy industry and the majority of producers do not actively try to manage or reduce BLV incidence within their herds. However, BLV is estimated to cost the dairy industry hundreds of millions of dollars annually and this is likely a conservative estimate. BLV is not thought to cause animal distress or serious pathology unless infection progresses to leukemia or lymphoma. However, a wealth of research supports the notion that BLV infection causes widespread abnormal immune function. BLV infection can impact cells of both the innate and adaptive immune system and alter proper functioning of uninfected cells. Despite strong evidence of abnormal immune signaling and functioning, little research has investigated the large-scale effects of BLV infection on host immunity and resistance to other infectious diseases. This review focuses on mechanisms of immune suppression associated with BLV infection, specifically aberrant signaling, proliferation and apoptosis, and the implications of switching from BLV latency to activation. In addition, this review will highlight underdeveloped areas of research relating to BLV infection and how it causes immune suppression.
Collapse
|
9
|
Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG's. Virology 2013; 449:181-9. [PMID: 24418551 DOI: 10.1016/j.virol.2013.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
Efforts to cure HIV-1 infections aim at eliminating proviral DNA. Integrated DNA from various viruses often becomes methylated de novo and transcriptionally inactivated. We therefore investigated CpG methylation profiles of 55 of 94 CpG's (58.5%) in HIV-1 proviral genomes including ten CpG's in each LTR and additional CpG's in portions of gag, env, nef, rev, and tat genes. We analyzed 33 DNA samples from PBMC's of 23 subjects representing a broad spectrum of HIV-1 disease. In 22 of 23 HIV-1-infected individuals, there were only unmethylated CpG's regardless of infection status. In one long term nonprogressor, however, methylation of proviral DNA varied between 0 and 75% over an 11-year period although the CD4+ counts remained stable. Hence levels of proviral DNA methylation can fluctuate. The preponderance of unmethylated CpG's suggests that proviral methylation is not a major factor in regulating HIV-1 proviral activity in PBMC's. Unmethylated CpG's may play a role in HIV-1 immunopathogenesis.
Collapse
|
10
|
Wang X, Wang S, Lin Y, Jiang C, Ma J, Zhao L, Lv X, Wang F, Shen R, Kong X, Zhou J. Genomic comparison between attenuated Chinese equine infectious anemia virus vaccine strains and their parental virulent strains. Arch Virol 2010; 156:353-7. [PMID: 21136127 DOI: 10.1007/s00705-010-0877-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/24/2010] [Indexed: 11/27/2022]
Abstract
A lentiviral vaccine, live attenuated equine infectious anemia virus (EIAV) vaccine, was developed in the 1970s, and this has made tremendous contributions to the control of equine infectious anemia (EIA) in China. Four key virus strains were generated during the attenuation of the EIAV vaccine: the original Liao-Ning strain (EIAV(LN40)), a donkey-adapted virulent strain (EIAV(DV117)), a donkey-leukocyte-attenuated vaccine strain (EIAV(DLV121)), and a fetal donkey dermal cell (FDD)-adapted vaccine strain (EIAV(FDDV13)). In this study, we analyzed the proviral genomes of these four EIAV strains and found a series of consensus substitutions among these strains. These mutations provide useful information for understanding the genetic basis of EIAV attenuation. Our results suggest that multiple mutations in a variety of genes in our attenuated EIAV vaccines not only provide a basis for virulence attenuation and induction of protective immunity but also greatly reduce the risk of reversion to virulence.
Collapse
Affiliation(s)
- Xuefeng Wang
- Division of Large Animal Infectious Diseases, Stated key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|