1
|
Daamouch S, Thiele S, Hofbauer L, Rauner M. Effects of adipocyte-specific Dkk1 deletion on bone homeostasis and obesity-induced bone loss in male mice. Endocr Connect 2023; 12:e230251. [PMID: 37615386 PMCID: PMC10563648 DOI: 10.1530/ec-23-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Kendle W, Hoang K, Korleski E, Panfil AR, Polakowski N, Lemasson I. Upregulation of Neuropilin-1 Inhibits HTLV-1 Infection. Pathogens 2023; 12:831. [PMID: 37375521 DOI: 10.3390/pathogens12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) can produce a spectrum of pathological effects ranging from inflammatory disorders to leukemia. In vivo, HTLV-1 predominantly infects CD4+ T-cells. Infectious spread within this population involves the transfer of HTLV-1 virus particles from infected cells to target cells only upon cell-to-cell contact. The viral protein, HBZ, was found to enhance HTLV-1 infection through transcriptional activation of ICAM1 and MYOF, two genes that facilitate viral infection. In this study, we found that HBZ upregulates the transcription of COL4A1, GEM, and NRP1. COL4A1 and GEM are genes involved in viral infection, while NRP1, which encodes neuropilin 1 (Nrp1), serves as an HTLV-1 receptor on target cells but has no reported function on HTLV-1-infected cells. With a focus on Nrp1, cumulative results from chromatin immunoprecipitation assays and analyses of HBZ mutants support a model in which HBZ upregulates NRP1 transcription by augmenting recruitment of Jun proteins to an enhancer downstream of the gene. Results from in vitro infection assays demonstrate that Nrp1 expressed on HTLV-1-infected cells inhibits viral infection. Nrp1 was found to be incorporated into HTLV-1 virions, and deletion of its ectodomain removed the inhibitory effect. These results suggest that inhibition of HTLV-1 infection by Nrp1 is caused by the ectodomain of Nrp1 extended from virus particles, which may inhibit the binding of virus particles to target cells. While HBZ has been found to enhance HTLV-1 infection using cell-based models, there may be certain circumstances in which activation of Nrp1 expression negatively impacts viral infection, which is discussed.
Collapse
Affiliation(s)
- Wesley Kendle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kimson Hoang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Erica Korleski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Polakowski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Isabelle Lemasson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Romerio F. Origin and functional role of antisense transcription in endogenous and exogenous retroviruses. Retrovirology 2023; 20:6. [PMID: 37194028 DOI: 10.1186/s12977-023-00622-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.
Collapse
Affiliation(s)
- Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Polakowski N, Sarker MAK, Hoang K, Boateng G, Rushing AW, Kendle W, Pique C, Green PL, Panfil AR, Lemasson I. HBZ upregulates myoferlin expression to facilitate HTLV-1 infection. PLoS Pathog 2023; 19:e1011202. [PMID: 36827461 PMCID: PMC9994761 DOI: 10.1371/journal.ppat.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abu Kawsar Sarker
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Georgina Boateng
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Amanda W. Rushing
- Catawba College, Department of Biology, Salisbury, North Carolina, United States of America
| | - Wesley Kendle
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick L. Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda R. Panfil
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Pal A, Leung JY, Ang GCK, Rao VK, Pignata L, Lim HJ, Hebrard M, Chang KT, Lee VK, Guccione E, Taneja R. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. eLife 2020; 9:57683. [PMID: 33252038 PMCID: PMC7728445 DOI: 10.7554/elife.57683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling is downregulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way toward novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among 13 drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-β-catenin node holds promise for differentiation therapy.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gareth Chin Khye Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Te Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
The splice 1 variant of HTLV-1 bZIP factor stabilizes c-Jun. Virology 2020; 549:51-58. [PMID: 32841759 DOI: 10.1016/j.virol.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
HBZ is expressed by the complex retrovirus, Human T-cell Leukemia Virus type 1, and implicated in pathological effects associated with viral infection. From the nucleus, HBZ alters gene expression by interacting with a variety of transcriptional regulatory proteins, among which is c-Jun. Previously, one of the three HBZ variants, HBZUS, was reported to decrease c-Jun expression by promoting its degradation. Here we show that another variant, HBZS1, produces the opposite effect. In the presence of HBZS1, c-Jun expression increases due to its stabilization. Our data suggest that this effect requires the ability of HBZS1 to interact with c-Jun. We provide evidence that HBZS1 inhibits the proteosomal degradation of c-Jun initiated by the Cop1-containing ubiquitin ligase complex. HBZS1 is the most abundant variant in HTLV-1-infected T-cells, and our data indicate that levels of c-Jun expression in infected cells are consistent with effects of HBZS1.
Collapse
|
8
|
Xiang J, Rauch DA, Huey DD, Panfil AR, Cheng X, Esser AK, Su X, Harding JC, Xu Y, Fox GC, Fontana F, Kobayashi T, Su J, Sundaramoorthi H, Wong WH, Jia Y, Rosol TJ, Veis DJ, Green PL, Niewiesk S, Ratner L, Weilbaecher KN. HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia. JCI Insight 2019; 4:128713. [PMID: 31578308 DOI: 10.1172/jci.insight.128713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.
Collapse
Affiliation(s)
- Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Rauch
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Devra D Huey
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Xiaogang Cheng
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C Harding
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory C Fox
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takayuki Kobayashi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junyi Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hemalatha Sundaramoorthi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wing Hing Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yizhen Jia
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J Rosol
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Deborah J Veis
- Department of Medicine, Division of Bone and Mineral Diseases, St. Louis, Missouri, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Human T-Cell Leukemia Virus Type 1 (HTLV-1) bZIP Factor Upregulates the Expression of ICAM-1 To Facilitate HTLV-1 Infection. J Virol 2019; 93:JVI.00608-19. [PMID: 31315993 DOI: 10.1128/jvi.00608-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes multiple pathological effects, ranging from a form of leukemia to a spectrum of inflammation-mediated diseases. These diseases arise from one or several infected CD4+ T cells among thousands acquiring proliferation and survival advantages and ultimately becoming pathogenic. Given the low incidence of HTLV-1-associated diseases among carriers, such cellular evolutionary processes appear to occur rarely. Therefore, infectious spread of HTLV-1 within the T-cell population may be one underlying factor influencing disease development. Free HTLV-1 virions are poorly infectious, so infection of T cells relies on direct contact between infected and target cells. Following contact, virions pass to target cells through a virological synapse or cellular conduits or are transferred to target cells within an extracellular matrix. Lymphocyte functioning antigen 1 (LFA-1) on the surface of the target cell engaging with its ligand, ICAM-1, on the surface of the infected cell (effector cell) initiates and stabilizes cell-cell contact for infection. We found that stable expression of an HTLV-1 accessory protein, HTLV-1 bZIP factor (HBZ), in Jurkat T cells increases homotypic aggregation. This phenotype was attributed to elevated ICAM-1 expression in the presence of HBZ. Using a single-cycle replication-dependent luciferase assay, we found that HBZ expression in Jurkat cells (used as effector cells) increases HTLV-1 infection. Despite this effect, HBZ could not replace the critical infection-related functions of the HTLV-1 regulatory protein Tax. However, in HTLV-1-infected T cells, knockdown of HBZ expression did lead to a decrease in infection efficiency. These overall results suggest that HBZ contributes to HTLV-1 infectivity.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) causes a variety of diseases, ranging from a fatal form of leukemia to immune-mediated inflammatory diseases. These diseases occur rarely, arising from one or a small subset of virally infected cells infrequently evolving into a pathogenic state. Thus, the process of HTLV-1 cell-to-cell transmission within the host helps influence the probability of disease development. HTLV-1 primarily infects T cells and initially spreads within this cell population when virally infected T cells dock to uninfected target T cells and then transfer HTLV-1 virus particles to the target cells. Here we found that the viral protein HTLV-1 bZIP factor (HBZ) promotes infectivity. HBZ accomplishes this task by increasing the surface abundance of a cellular adhesion protein known as intercellular adhesion molecule 1 (ICAM-1), which helps initiate and stabilize contact (docking) between infected and target T cells. These results define a novel and unexpected function of HBZ, diverging from its defined functions in cellular survival and proliferation.
Collapse
|
10
|
Rushing AW, Rushing B, Hoang K, Sanders SV, Péloponèse JM, Polakowski N, Lemasson I. HTLV-1 basic leucine zipper factor protects cells from oxidative stress by upregulating expression of Heme Oxygenase I. PLoS Pathog 2019; 15:e1007922. [PMID: 31251786 PMCID: PMC6623464 DOI: 10.1371/journal.ppat.1007922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Adult T-cell Leukemia (ATL) is a lymphoproliferative disease of CD4+ T-cells infected with Human T-cell Leukemia Virus type I (HTLV-1). With the exception of allogeneic hematopoietic stem cell transplantation, there are no effective treatments to cure ATL, and ATL cells often acquire resistance to conventional chemotherapeutic agents. Accumulating evidence shows that development and maintenance of ATL requires key contributions from the viral protein, HTLV-1 basic leucine zipper factor (HBZ). In this study we found that HBZ activates expression of Heme Oxygenase 1 (HMOX-1), a component of the oxidative stress response that functions to detoxify free heme. Transcription of HMOX1 and other antioxidant genes is regulated by the small Mafs. These cellular basic leucine zipper (bZIP) factors control transcription by forming homo- or heterodimers among themselves or with other cellular bZIP factors that then bind Maf responsive elements (MAREs) in promoters or enhancers of antioxidant genes. Our data support a model in which HBZ activates HMOX1 transcription by forming heterodimers with the small Mafs that bind MAREs located in an upstream enhancer region. Consistent with this model, we found that HMOX-1 is upregulated in HTLV-1-transformed T-cell lines and confers these cells with resistance to heme-induced cytotoxicity. In this context, HBZ-mediated activation of HMOX-1 expression may contribute to resistance of ATL cells to certain chemotherapeutic agents. We also provide evidence that HBZ counteracts oxidative stress caused by two other HTLV-1-encoded proteins, Tax and p13. Tax induces oxidative stress as a byproduct of driving mitotic expansion of infected cells, and p13 is believed to induce oxidative stress to eliminate infected cells that have become transformed. Therefore, in this context, HBZ-mediated activation of HMOX-1 expression may facilitate transformation. Overall, this study characterizes a novel function of HBZ that may support the development and maintenance of ATL.
Collapse
Affiliation(s)
- Amanda W. Rushing
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail: (AWR); (IL)
| | - Blake Rushing
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Stephanie V. Sanders
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jean-Marie Péloponèse
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Nicholas Polakowski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Isabelle Lemasson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail: (AWR); (IL)
| |
Collapse
|
11
|
The Human T-Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor Attenuates Repair of Double-Stranded DNA Breaks via Nonhomologous End Joining. J Virol 2018; 92:JVI.00672-18. [PMID: 29769340 DOI: 10.1128/jvi.00672-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a fatal malignancy of CD4+ T cells infected with human T-cell leukemia virus type 1 (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair but has not been shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper (bZIP) factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by nonhomologous end joining (NHEJ), in a manner dependent upon the bZIP domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA protein kinase (DNA-PK) activation following treatment with etoposide. Although Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found that this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax but also by HBZ and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1-mediated oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15 million to 20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1-positive population develop adult T-cell leukemia (ATL), a fatal disease that is not highly responsive to treatment. Although ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the nonhomologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL.
Collapse
|
12
|
Esser AK, Rauch DA, Xiang J, Harding JC, Kohart NA, Ross MH, Su X, Wu K, Huey D, Xu Y, Vij K, Green PL, Rosol TJ, Niewiesk S, Ratner L, Weilbaecher KN. HTLV-1 viral oncogene HBZ induces osteolytic bone disease in transgenic mice. Oncotarget 2017; 8:69250-69263. [PMID: 29050201 PMCID: PMC5642476 DOI: 10.18632/oncotarget.20565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell malignancy that occurs in HTLV-1 infected patients. Most ATL patients develop osteolytic lesions and hypercalcemia of malignancy, causing severe skeletal related complications and reduced overall survival. The HTLV-1 virus encodes 2 viral oncogenes, Tax and HBZ. Tax, a transcriptional activator, is critical to ATL development, and has been implicated in pathologic osteolysis. HBZ, HTLV-1 basic leucine zipper transcription factor, promotes tumor cell proliferation and disrupts Wnt pathway modulators; however, its role in ATL induced osteolytic bone loss is unknown. To determine if HBZ is sufficient for the development of bone loss, we established a transgenic Granzyme B HBZ (Gzmb-HBZ) mouse model. Lymphoproliferative disease including tumors, enlarged spleens and/or abnormal white cell counts developed in two-thirds of Gzmb-HBZ mice at 18 months. HBZ positive cells were detected in tumors, spleen and bone marrow. Importantly, pathologic bone loss and hypercalcemia were present at 18 months. Bone-acting factors were present in serum and RANKL, PTHrP and DKK1, key mediators of hypercalcemia and bone loss, were upregulated in Gzmb-HBZ T cells. These data demonstrate that Gzmb-HBZ mice model ATL bone disease and express factors that are current therapeutic targets for metastatic and bone resident tumors.
Collapse
Affiliation(s)
- Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel A Rauch
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Harding
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole A Kohart
- Department of Veterinary Biosciences, School of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael H Ross
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Wu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Devra Huey
- Department of Veterinary Biosciences, School of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kiran Vij
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick L Green
- Department of Veterinary Biosciences, School of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, School of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, School of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Wright DG, Marchal C, Hoang K, Ankney JA, Nguyen ST, Rushing AW, Polakowski N, Miotto B, Lemasson I. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget 2016; 7:1687-706. [PMID: 26625199 PMCID: PMC4811490 DOI: 10.18632/oncotarget.6424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/15/2015] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples.
Collapse
Affiliation(s)
- Diana G Wright
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Claire Marchal
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - John A Ankney
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie T Nguyen
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Amanda W Rushing
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Benoit Miotto
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
14
|
Abstract
Hypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.
Collapse
Affiliation(s)
- Peter J Tebben
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ravinder J Singh
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Rajiv Kumar
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
15
|
van Zuylen WJ, Rawlinson WD, Ford CE. The Wnt pathway: a key network in cell signalling dysregulated by viruses. Rev Med Virol 2016; 26:340-55. [PMID: 27273590 DOI: 10.1002/rmv.1892] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy J van Zuylen
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Caroline E Ford
- Metastasis Research Group, School of Women's and Children's Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
16
|
Aguilera Ó, González-Sancho JM, Zazo S, Rincón R, Fernández AF, Tapia O, Canals F, Morte B, Calvanese V, Orgaz JL, Niell N, Aguilar S, Freije JM, Graña O, Pisano DG, Borrero A, Martínez-Useros J, Jiménez B, Fraga MF, García-Foncillas J, López-Otín C, Lafarga M, Rojo F, Muñoz A. Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget 2016; 6:5903-17. [PMID: 25788273 PMCID: PMC4467410 DOI: 10.18632/oncotarget.3464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 12/25/2022] Open
Abstract
Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/β-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/β-catenin signaling that also has undefined β-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Óscar Aguilera
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Zazo
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Raúl Rincón
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IFIMAV, Santander, Spain.,Present address: The Scripps Research Institute, La Jolla, CA, USA
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatriz Morte
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincenzo Calvanese
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain.,Present address: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, CA, USA
| | - José L Orgaz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Núria Niell
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Aguilar
- Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Freije
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Osvaldo Graña
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurea Borrero
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IFIMAV, Santander, Spain
| | - Federico Rojo
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Minarovits J, Demcsák A, Banati F, Niller HH. Epigenetic Dysregulation in Virus-Associated Neoplasms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 879:71-90. [DOI: 10.1007/978-3-319-24738-0_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
HBZ stimulates brain-derived neurotrophic factor/TrkB autocrine/paracrine signaling to promote survival of human T-cell leukemia virus type 1-Infected T cells. J Virol 2014; 88:13482-94. [PMID: 25210182 DOI: 10.1128/jvi.02285-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal proliferation, survival, and plasticity. These effects occur through autocrine and paracrine signaling events initiated by interactions between secreted BDNF and its high-affinity receptor, TrkB. A BDNF/TrkB autocrine/paracrine signaling loop has additionally been implicated in augmenting the survival of cells representing several human cancers and is associated with poor patient prognosis. Adult T-cell leukemia (ATL) is a fatal malignancy caused by infection with the complex retrovirus human T-cell leukemia virus type 1 (HTLV-1). In this study, we found that the HTLV-1-encoded protein HBZ activates expression of BDNF, and consistent with this effect, BDNF expression is elevated in HTLV-1-infected T-cell lines compared to uninfected T cells. Expression of TrkB is also higher in HTLV-1-infected T-cell lines than in uninfected T cells. Furthermore, levels of both BDNF and TrkB mRNAs are elevated in peripheral blood mononuclear cells (PBMCs) from ATL patients, and ATL patient sera contain higher concentrations of BDNF than sera from noninfected individuals. Finally, chemical inhibition of TrkB signaling increases apoptosis in HTLV-1-infected T cells and reduces phosphorylation of glycogen synthase kinase 3β (GSK-3β), a downstream target in the signaling pathway. These results suggest that HBZ contributes to an active BDNF/TrkB autocrine/paracrine signaling loop in HTLV-1-infected T cells that enhances the survival of these cells. IMPORTANCE Infection with human T-cell leukemia virus type 1 (HTLV-1) can cause a rare form of leukemia designated adult T-cell leukemia (ATL). Because ATL patients are unresponsive to chemotherapy, this malignancy is fatal. As a retrovirus, HTLV-1 integrates its genome into a host cell chromosome in order to utilize host factors for replication and expression of viral proteins. However, in infected cells from ATL patients, the viral genome is frequently modified to block expression of all but a single viral protein. This protein, known as HBZ, is therefore believed to modulate cellular pathways necessary for the leukemic state and the chemotherapeutic resistance of the cell. Here we provide evidence to support this hypothesis. We found that HBZ promotes a BDNF/TrkB autocrine/paracrine signaling pathway that is known to enhance the survival and chemotherapeutic resistance of other types of cancer cells. It is possible that inhibition of this pathway may improve treatments for ATL.
Collapse
|
19
|
Niller HH, Banati F, Nagy K, Buzas K, Minarovits J. Update on microbe-induced epigenetic changes: bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 2013. [DOI: 10.2217/fvl.13.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathoepigenetics is a new discipline describing how disturbances in epigenetic regulation alter the epigenotype and gene-expression pattern of human, animal or plant cells. Such ‘epigenetic reprogramming’ may play an important role in the initiation and progression of a wide variety of diseases. Infectious diseases also belong to this category: recent data demonstrated that microbial pathogens, including bacteria and viruses, are capable of dysregulating the epigenetic machinery of their host cell. The resulting heritable changes in host cell gene expression may favor the colonization, growth or spread of infectious pathogens. It may also facilitate the establishment of latency and malignant cell transformation. In this article, we review how bacterial epigenetic effectors and inflammatory processes elicited by bacteria alter the host cell epigenotype, and describe how oncoproteins encoded by human tumor viruses act as epigenetic dysregulators to alter the phenotype and behavior of host cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg D93053, Germany
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, H-9200 Mosonmagyarovar, Pozsonyi út 88, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Krisztina Buzas
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| |
Collapse
|
20
|
Barbeau B, Peloponese JM, Mesnard JM. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 2013; 4:226. [PMID: 23966985 PMCID: PMC3736048 DOI: 10.3389/fmicb.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022] Open
Abstract
The production of antisense transcripts from the 3′ long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5′ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal Montréal, QC, Canada
| | | | | |
Collapse
|
21
|
Borowiak M, Kuhlmann AS, Girard S, Gazzolo L, Mesnard JM, Jalinot P, Dodon MD. HTLV-1 bZIP factor impedes the menin tumor suppressor and upregulates JunD-mediated transcription of the hTERT gene. Carcinogenesis 2013; 34:2664-72. [PMID: 23784080 DOI: 10.1093/carcin/bgt221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomerase activity in cancer cells is dependent on the transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene, encoding the catalytic subunit of human telomerase. We have shown previously that HTLV-1 basic leucine zipper (HBZ), a viral regulatory protein encoded by the human retrovirus, human T-cell leukemia virus, type 1 (HTLV-1) cooperates with JunD to enhance hTERT transcription in adult T-cell leukemia (ATL) cells. Menin, the product of the tumor-suppressor MEN-1 gene, also interacts with JunD, represses its transcriptional activity and downregulates telomerase expression. The main objective of this study was to examine how menin and HBZ get involved in the regulation of hTERT transcription. In this study, we report that JunD and menin form a repressor complex of hTERT transcription in HBZ-negative cells. Conversely, in HBZ-positive cells, the formation of a JunD/HBZ/menin ternary complex and the recruitment of p300 histone acetyl transferase activity by HBZ lead to a decreased activity of the JunD-menin suppressor unit that correlates with the activation of hTERT transcription. Silencing HBZ or menin expression in ATL cells confirms that these proteins are differentially involved in telomerase regulation. These results propose that HBZ, by impeding the tumor-suppressor activity of menin, functions as a leukemogenic cofactor to upregulate gene transcription and promote JunD-mediated leukemogenesis.
Collapse
Affiliation(s)
- Malgorzata Borowiak
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Adult T-cell leukemia (ATL) is one of the most aggressive hematologic malignancies caused by human T-lymphotropic virus type 1 (HTLV-1) infection. The prognosis of ATL is extremely poor; however, effective strategies for diagnosis and treatment have not been established. To identify novel therapeutic targets and diagnostic markers for ATL, we employed focused proteomic profiling of the CD4(+)CD25(+)CCR4(+) T-cell subpopulation in which HTLV-1-infected cells were enriched. Comprehensive quantification of 14 064 peptides and subsequent 2-step statistical analysis using 29 cases (6 uninfected controls, 5 asymptomatic carriers, 9 HTLV-1-associated myelopathy/tropical spastic paraparesis patients, 9 ATL patients) identified 91 peptide determinants that statistically classified 4 clinical groups with an accuracy rate of 92.2% by cross-validation test. Among the identified 17 classifier proteins, α-II spectrin was drastically accumulated in infected T cells derived from ATL patients, whereas its digestive protease calpain-2 (CAN2) was significantly downregulated. Further cell cycle analysis and cell growth assay revealed that rescue of CAN2 activity by overexpressing constitutively active CAN2 (Δ(19)CAN2) could induce remarkable cell death on ATL cells accompanied by reduction of α-II spectrin. These results support that proteomic profiling of HTLV-1-infected T cells could provide potential diagnostic biomarkers and an attractive resource of therapeutic targets for ATL.
Collapse
|
23
|
Wurm T, Wright DG, Polakowski N, Mesnard JM, Lemasson I. The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP. Nucleic Acids Res 2012; 40:5910-25. [PMID: 22434882 PMCID: PMC3401433 DOI: 10.1093/nar/gks244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection.
Collapse
Affiliation(s)
- Torsten Wurm
- East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
24
|
Pathogenesis of Metastatic Calcification and Acute Pancreatitis in Adult T-Cell Leukemia under Hypercalcemic State. LEUKEMIA RESEARCH AND TREATMENT 2011. [PMID: 23198151 PMCID: PMC3504271 DOI: 10.1155/2012/128617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL). Hypercalcemia is common in patients with ATL. These patients rarely develop metastatic calcification and acute pancreatitis. The underlying pathogenesis of this condition is osteoclast hyperactivity with associated overproduction of parathyroid hormone-related protein, which results in hypercalcemia in association with bone demineralization. The discovery of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL), its receptor RANK, and its decoy receptor osteoprotegerin (OPG), enhanced our understanding of the mechanisms of ATL-associated hypercalcemia. Macrophage inflammatory protein-1-α, tumor necrosis factor-α, interleukin-1, and interleukin-6 are important molecules that enhance the migration and differentiation of osteoclasts and the associated enhanced production of RANKL for osteoblast formation. In this paper, we focus on metastatic calcification and acute pancreatitis in ATL, highlighting recent advances in the understanding of the molecular role of the RANKL/RANK/OPG system including its interaction with various cytokines and calciotropic hormones in the regulation of osteoclastogenesis for bone resorption in hypercalcemic ATL patients.
Collapse
|
25
|
Molecular and Cellular Mechanism of Leukemogenesis of ATL: Emergent Evidence of a Significant Role for HBZ in HTLV-1-Induced Pathogenesis. LEUKEMIA RESEARCH AND TREATMENT 2011. [PMID: 23198153 PMCID: PMC3504235 DOI: 10.1155/2012/213653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adult T-cell leukemia (ATL) is a leukemia derived from mature CD4+ T cells and induced by human T-cell leukemia virus type 1 (HTLV-1) infection. Previous studies have revealed many possible molecular and cellular mechanisms of HTLV-1-induced leukemogenesis, but it still remains unknown how HTLV-1 transforms peripheral CD4 T cells in infected individuals. Given the fact that only 2–5% of infected individuals develop ATL, HTLV-1 infection alone is not sufficient for the transformation of infected cells. Host genetic and epigenetic abnormalities and host immunological status should be considered in attempting to understand the mechanism of the oncogenesis of ATL. Nonetheless, it is obvious that HTLV-1 infection dramatically increases the risk of leukemia generation from peripheral CD4 T-cells, in which the incidence of leukemia is quite low. Furthermore, the evidence that all ATL cases retain the HTLV-1 provirus, especially the 3′ region, indicates that HTLV-1-encoded genes play a critical role in leukemogenesis. Since increasing evidence indicates that the HTLV-1 bZIP factor (HBZ) gene plays a significant role in the pathogenesis of HTLV-1, we will discuss the cellular and molecular mechanism of ATL generation from the virological point of view, particularly focusing on HBZ.
Collapse
|
26
|
Polakowski N, Han H, Lemasson I. Direct inhibition of RNAse T2 expression by the HTLV-1 viral protein Tax. Viruses 2011; 3:1485-500. [PMID: 21994792 PMCID: PMC3185805 DOI: 10.3390/v3081485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| | | | - Isabelle Lemasson
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| |
Collapse
|
27
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the provirus, is involved in both regulation of viral gene transcription and T-cell proliferation. We showed in this report that HBZ interacted with Smad2/3, and enhanced transforming growth factor-β (TGF-β)/Smad transcriptional responses in a p300-dependent manner. The N-terminal LXXLL motif of HBZ was responsible for HBZ-mediated TGF-β signaling activation. In a serial immunoprecipitation assay, HBZ, Smad3, and p300 formed a ternary complex, and the association between Smad3 and p300 was markedly enhanced in the presence of HBZ. In addition, HBZ could overcome the repression of the TGF-β response by Tax. Finally, HBZ expression resulted in enhanced transcription of Pdgfb, Sox4, Ctgf, Foxp3, Runx1, and Tsc22d1 genes and suppression of the Id2 gene; such effects were similar to those by TGF-β. In particular, HBZ induced Foxp3 expression in naive T cells through Smad3-dependent TGF-β signaling. Our results suggest that HBZ, by enhancing TGF-β signaling and Foxp3 expression, enables HTLV-1 to convert infected T cells into regulatory T cells, which is thought to be a critical strategy for virus persistence.
Collapse
|
28
|
Barbeau B, Mesnard JM. Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 2011; 3:456-68. [PMID: 21994742 PMCID: PMC3185765 DOI: 10.3390/v3050456] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022] Open
Abstract
Retroviral gene expression generally depends on a full-length transcript that initiates in the 5′ long terminal repeat (LTR), which is either unspliced or alternatively spliced. We and others have demonstrated the existence of an antisense transcript initiating in the 3′ LTR of the Human T-cell Leukemia Virus type 1 (HTLV-1) that is involved in the production of HBZ (HTLV-1 basic leucine zipper (bZIP) factor). HBZ is a Fos-like factor capable of inhibiting Tax-mediated activation of the HTLV-1 LTR by interacting with the cellular transcription factor cAMP-response element-binding protein (CREB) and the pleiotropic cellular coactivators p300/CBP. HBZ can also activate cellular transcription through its interaction with p300/CBP. Interestingly, HBZ has also been found to promote T-lymphocyte proliferation. By down-regulating viral expression and by stimulating T-cell proliferation, HBZ could be essential in the establishment of a chronic infection. Antisense transcription also occurs in the closely related HTLV-2 retrovirus as well as in the recently discovered HTLV-3 and HTLV-4. These antisense transcripts are also involved in the production of retroviral proteins that we have termed Antisense Protein of HTLVs (APH). Like HBZ, the APH proteins are localized in the nucleus of transfected cells and repress Tax-mediated viral transcription.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Centre de recherche Bio Med, Université du Québec à Montréal, Montréal (Québec) H2X 3X8, Canada; E-Mail:
| | - Jean-Michel Mesnard
- Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé, Université Montpellier 1, 34293 Montpellier Cedex 5, France
- CNRS, UM5236, CPBS, F-34965 Montpellier, France
- CPBS, Université Montpellier 2, F-34095 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-434-359-440; Fax: +33-434-359-411
| |
Collapse
|
29
|
Cook PR, Polakowski N, Lemasson I. HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP. J Mol Biol 2011; 409:384-98. [PMID: 21497608 DOI: 10.1016/j.jmb.2011.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
The complex retrovirus human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Deregulation of cellular transcription is thought to be an important step for T-cell transformation caused by viral infection. HTLV-1 basic leucine zipper factor (HBZ) is one of the viral proteins believed to be involved in this process, as it deregulates the expression of numerous cellular genes. In the context of the provirus, HBZ represses HTLV-1 transcription, in part, by binding to the homologous cellular coactivators p300 and CBP. These coactivators play a central role in transcriptional regulation. In this study, we determined that HBZ binds with high affinity to the KIX domain of p300/CBP. This domain contains two binding surfaces that are differentially targeted by multiple cellular factors. We show that two φXXφφ motifs in the activation domain of HBZ mediate binding to a single surface of the KIX domain, the mixed-lineage leukemia (MLL) binding surface. Formation of this interaction inhibits binding of MLL to the KIX domain while enhancing the binding of the transcription factor c-Myb to the opposite surface of KIX. Consequently, HBZ inhibits transcriptional activation mediated by MLL and enhances activation mediated by c-Myb. CREB, which binds the same surface of KIX as c-Myb, also exhibited an increase in activity through HBZ. These results indicate that HBZ is able to alter gene expression by competing with transcription factors for the occupancy of one surface of KIX while enhancing the binding of factors to the other surface.
Collapse
Affiliation(s)
- Pamela R Cook
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 278374, USA
| | | | | |
Collapse
|
30
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|