1
|
Xu P, Tong W, Kuo CY, Chen HH, Wang RYL. The Upf1 protein restricts EV-A71 viral replication. Microbes Infect 2023; 25:105220. [PMID: 37734533 DOI: 10.1016/j.micinf.2023.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Enterovirus A71 (EV-A71) is transmitted through the respiratory tract, gastrointestinal system, and fecal-oral routes. The main symptoms caused by EV-A71 are hand, foot, and mouth disease (HFMD) or vesicular sore throat. Upf1 (Up-frameshift protein 1) was reported to degrade mRNA containing early stop codons, known as nonsense-mediated decay (NMD). Upf1 is also involved in the NMD mechanism as a host factor detrimental to viral replication. In this study, we dissected the potential roles of Upf1 in the EV-A71-infected cells. Upf1 was virulently down-regulated in three different EV-A71-infected cells, RD, Hela, and 293T, implying that Upf1 is a host protein unfavorable for EV-A71 replication. Knockdown of Upf1 protein resulted in increased viral RNA expression and production of progeny virus, and conversely, overexpression of Upf1 protein resulted in decreased viral RNA expression and production of progeny virus. Importantly, we observed increased RNA levels of asparagine synthetase (ASNS), one of the indicator substrates for the NMD mechanism, which indirectly suggests that EV-A71 infection of cells suppresses NMD activity in the host. The results shown in this study are useful for subsequent analysis of the relationship between the NMD/Upf1 mechanism and other picornaviruses, which may lead to the development of anti-picornavirus drugs.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No. 1 People's Hospital and Hubei University of Medicine; Hubei Province, China
| | - Wei Tong
- Department of Clinical Laboratory, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chen-Yen Kuo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou 33305, Taiwan
| | - Han-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Robert Y L Wang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou 33305, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
2
|
Muñoz O, Lore M, Jagannathan S. The long and short of EJC-independent nonsense-mediated RNA decay. Biochem Soc Trans 2023; 51:1121-1129. [PMID: 37145092 DOI: 10.1042/bst20221131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated RNA decay (NMD) plays a dual role as an RNA surveillance mechanism against aberrant transcripts containing premature termination codons and as a gene regulatory mechanism for normal physiological transcripts. This dual function is possible because NMD recognizes its substrates based on the functional definition of a premature translation termination event. An efficient mode of NMD target recognition involves the presence of exon-junction complexes (EJCs) downstream of the terminating ribosome. A less efficient, but highly conserved, mode of NMD is triggered by long 3' untranslated regions (UTRs) that lack EJCs (termed EJC-independent NMD). While EJC-independent NMD plays an important regulatory role across organisms, our understanding of its mechanism, especially in mammalian cells, is incomplete. This review focuses on EJC-independent NMD and discusses the current state of knowledge and factors that contribute to the variability in the efficiency of this mechanism.
Collapse
Affiliation(s)
- Oscar Muñoz
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
3
|
Ahmed MR, Du Z. Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses 2023; 15:v15040816. [PMID: 37112798 PMCID: PMC10141005 DOI: 10.3390/v15040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The virus–host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD–virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.
Collapse
Affiliation(s)
| | - Zhiyou Du
- Correspondence: ; Tel.: +86-571-86843195
| |
Collapse
|
4
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Karousis ED, Mühlemann O. The broader sense of nonsense. Trends Biochem Sci 2022; 47:921-935. [PMID: 35780009 DOI: 10.1016/j.tibs.2022.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Beemon KL. Retroviral RNA Processing. Viruses 2022; 14:v14051113. [PMID: 35632854 PMCID: PMC9143442 DOI: 10.3390/v14051113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive. However, it tries to address some of the major questions in the field with examples of how different retroviruses express their genes. It is amazing that a single primary RNA transcript can have so many possible fates: genomic RNA, unspliced mRNA, and up to 50 different alternatively spliced mRNAs. This review will discuss the sorting of RNAs for packaging or translation, RNA nuclear export mechanisms, splicing, translation, RNA modifications, and avoidance of nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
8
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
9
|
Leon K, Ott M. An 'Arms Race' between the Nonsense-mediated mRNA Decay Pathway and Viral Infections. Semin Cell Dev Biol 2020; 111:101-107. [PMID: 32553580 PMCID: PMC7295464 DOI: 10.1016/j.semcdb.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
The Nonsense-mediated mRNA Decay (NMD) pathway is an RNA quality control pathway conserved among eukaryotic cells. While historically thought to predominantly recognize transcripts with premature termination codons, it is now known that the NMD pathway plays a variety of roles, from homeostatic events to control of viral pathogens. In this review we highlight the reciprocal interactions between the host NMD pathway and viral pathogens, which have shaped both the host antiviral defense and viral pathogenesis.
Collapse
Affiliation(s)
- Kristoffer Leon
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
10
|
Lukhovitskaya N, Ryabova LA. Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Sci Rep 2019; 9:7042. [PMID: 31065034 PMCID: PMC6504953 DOI: 10.1038/s41598-019-43414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
During pathogenesis, viruses hijack the host cellular machinery to access molecules and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARICOSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration-based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV can intercept NMD by targeting the decapping machinery through the scaffold protein VARICOSE, indicating that 5'-3' mRNA decapping is a late step in NMD-related mRNA degradation in plants.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Rao S, Amorim R, Niu M, Breton Y, Tremblay MJ, Mouland AJ. Host mRNA decay proteins influence HIV-1 replication and viral gene expression in primary monocyte-derived macrophages. Retrovirology 2019; 16:3. [PMID: 30732620 PMCID: PMC6367771 DOI: 10.1186/s12977-019-0465-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mammalian cells harbour RNA quality control and degradative machineries such as nonsense-mediated mRNA decay that target cellular mRNAs for clearance from the cell to avoid aberrant gene expression. The role of the host mRNA decay pathways in macrophages in the context of human immunodeficiency virus type 1 (HIV-1) infection is yet to be elucidated. Macrophages are directly infected by HIV-1, mediate the dissemination of the virus and contribute to the chronic activation of the inflammatory response observed in infected individuals. Therefore, we characterized the effects of four host mRNA decay proteins, i.e., UPF1, UPF2, SMG6 and Staufen1, on viral replication in HIV-1-infected primary monocyte-derived macrophages (MDMs). RESULTS Steady-state expression levels of these host mRNA decay proteins were significantly downregulated in HIV-1-infected MDMs. Moreover, UPF2 and SMG6 inhibited HIV-1 gene expression in macrophages to a similar level achieved by SAMHD1, by directly influencing viral genomic RNA levels. Staufen1, a host protein also involved in UPF1-dependent mRNA decay and that acts at several HIV-1 replication steps, enhanced HIV-1 gene expression in MDMs. CONCLUSIONS These results provide new evidence for roles of host mRNA decay proteins in regulating HIV-1 replication in infected macrophages and can serve as potential targets for broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
| | - Yann Breton
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Kishor A, Ge Z, Hogg JR. hnRNP L-dependent protection of normal mRNAs from NMD subverts quality control in B cell lymphoma. EMBO J 2018; 38:embj.201899128. [PMID: 30530525 DOI: 10.15252/embj.201899128] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
The human nonsense-mediated mRNA decay pathway (NMD) performs quality control and regulatory functions within complex post-transcriptional regulatory networks. In addition to degradation-promoting factors, efficient and accurate detection of NMD substrates involves proteins that safeguard normal mRNAs. Here, we identify hnRNP L as a factor that protects mRNAs with NMD-inducing features including long 3'UTRs. Using biochemical and transcriptome-wide approaches, we provide evidence that the susceptibility of a given transcript to NMD can be modulated by its 3'UTR length and ability to recruit hnRNP L. Integrating these findings with the previously defined role of polypyrimidine tract binding protein 1 in NMD evasion enables enhanced prediction of transcript susceptibility to NMD. Unexpectedly, this system is subverted in B cell lymphomas harboring translocations that produce BCL2:IGH fusion mRNAs. CRISPR/Cas9 deletion of hnRNP L binding sites near the BCL2 stop codon reduces expression of the fusion mRNAs and induces apoptosis. Together, our data indicate that protection by hnRNP L overrides the presence of multiple 3'UTR introns, allowing these aberrant mRNAs to evade NMD and promoting BCL2 overexpression and neoplasia.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition. Nat Commun 2018; 9:431. [PMID: 29382845 PMCID: PMC5789848 DOI: 10.1038/s41467-017-02793-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022] Open
Abstract
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome. UPF1 is a central protein in nonsense-mediated mRNA decay (NMD), but contribution of its RNA processivity to NMD is unclear. Here, the authors show how the retroviral Tax protein interacts with and inhibits UPF1, and demonstrate that UPF1’s translocase activity contributes to NMD.
Collapse
|
14
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
15
|
Balagopal V, Beemon KL. Rous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3'UTRs. Viruses 2017; 9:v9080204. [PMID: 28763028 PMCID: PMC5580461 DOI: 10.3390/v9080204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3′ untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3′UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3′UTRs, like those with premature termination codons, are frequently recognized by the cellular nonsense-mediated mRNA decay (NMD) machinery and targeted for degradation. To prevent this, RSV has evolved an RNA stability element (RSE) in the RNA immediately downstream of the gag termination codon. This 400-nt RNA sequence stabilizes premature termination codons (PTCs) in gag. It also stabilizes globin mRNAs with long 3′UTRs, when placed downstream of the termination codon. It is not clear how the RSE stabilizes the mRNA and prevents decay. We show here that the presence of RSE inhibits deadenylation severely. In addition, the RSE also impairs decapping (DCP2) and 5′-3′ exonucleolytic (XRN1) function in knockdown experiments in human cells.
Collapse
Affiliation(s)
- Vidya Balagopal
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Balistreri G, Bognanni C, Mühlemann O. Virus Escape and Manipulation of Cellular Nonsense-Mediated mRNA Decay. Viruses 2017; 9:v9010024. [PMID: 28124995 PMCID: PMC5294993 DOI: 10.3390/v9010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD), a cellular RNA turnover pathway targeting RNAs with features resulting in aberrant translation termination, has recently been found to restrict the replication of positive-stranded RNA ((+)RNA) viruses. As for every other antiviral immune system, there is also evidence of viruses interfering with and modulating NMD to their own advantage. This review will discuss our current understanding of why and how NMD targets viral RNAs, and elaborate counter-defense strategies viruses utilize to escape NMD.
Collapse
Affiliation(s)
- Giuseppe Balistreri
- Department of Biosciences, University of Helsinki, Helsinki FIN-00014, Finland.
| | - Claudia Bognanni
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland.
| |
Collapse
|
17
|
Abstract
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.
Collapse
|
18
|
Ottens F, Gehring NH. Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflugers Arch 2016; 468:1013-28. [PMID: 27138169 DOI: 10.1007/s00424-016-1826-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a quality control mechanism that degrades irregular or faulty mRNAs. NMD mainly degrades mRNAs, which contain a premature termination codon (PTC) and therefore encode a truncated protein. Furthermore, NMD alters the expression of different types of cellular mRNAs, the so-called endogenous NMD substrates. In this review, we focus on the impact of NMD on cellular and molecular physiology. We specify key classes of NMD substrates and provide a detailed overview of the physiological function of gene regulation by NMD. We also describe different mechanisms of NMD substrate degradation and how the regulation of the NMD machinery affects cellular physiology. Finally, we outline the physiological functions of central NMD factors.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany.
| |
Collapse
|
19
|
Ge Z, Quek BL, Beemon KL, Hogg JR. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 2016; 5. [PMID: 26744779 PMCID: PMC4764554 DOI: 10.7554/elife.11155] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI:http://dx.doi.org/10.7554/eLife.11155.001 Genes are used as templates to create molecules of messenger RNA (mRNA) that contain all the information needed to make a protein. This information begins with a 'start site' and ends with a 'stop site.' The regions of the mRNA outside of the start and stop sites are called untranslated regions. Not all mRNAs are correctly made, and cells combat this problem by detecting and destroying faulty mRNAs before they are translated into protein. One way cells do this is by recognizing and destroying mRNAs that include long untranslated regions, which can indicate that the mRNA might have a stop site too early in its sequence. A key problem with this mechanism, however, is that long untranslated regions also serve important roles in the cell: for example, by determining where and when mRNA molecules are read to make protein. How then do mRNAs with long but important untranslated regions escape detection and degradation? Ge et al. have now investigated this question using an approach that allows a 'handle' to be attached to particular RNA molecules. This allows the RNA and any proteins bound to it to be purified away from all other RNAs and proteins in the cell, and the proteins can then be identified by a technique called mass spectrometry. Ge at al. found that mRNAs can recruit a protein called PTBP1 to part of the RNA sequence near the stop site. This prevents an RNA decay protein recognizing and triggering the degradation of the mRNA, even if the mRNA has a long untranslated region. Thus, PTBP1 plays a crucial role in protecting human RNAs with long untranslated regions from destruction by the nonsense-mediated decay pathway. Some viral RNAs are also able to evade decay, and so Ge et al. hypothesize that the virus stole this method for maintaining its RNAs from host cells. A future goal is to understand whether this system works the same way in all cell types or protects different RNAs in different cells. DOI:http://dx.doi.org/10.7554/eLife.11155.002
Collapse
Affiliation(s)
- Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Bao Lin Quek
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Karen L Beemon
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
21
|
Mocquet V, Durand S, Jalinot P. How Retroviruses Escape the Nonsense-Mediated mRNA Decay. AIDS Res Hum Retroviruses 2015; 31:948-58. [PMID: 26066561 DOI: 10.1089/aid.2014.0326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many posttranscriptional processes are known to regulate gene expression and some of them can act as an antiviral barrier. The nonsense-mediated mRNA decay (NMD) was first identified as an mRNA quality control pathway that triggers rapid decay of mRNA containing premature stop codons due to mutations. NMD is now considered as a general posttranscriptional regulation pathway controlling the expression of a large set of cellular genes. In addition to premature stop codons, many other features including alternative splicing, 5' uORF, long 3' UTR, selenocystein codons, and frameshift are able to promote NMD. Interestingly, many viral mRNAs exhibit some of these features suggesting that virus expression and replication might be sensitive to NMD. Several studies, including recent ones, have shown that this is the case for retroviruses; however, it also appears that retroviruses have developed strategies to overcome NMD in order to protect their genome and ensure a true expression of their genes. As a consequence of NMD inhibition, these viruses also affect the expression of host genes that are prone to NMD, and therefore can potentially trigger pathological effects on infected cells. Here, we review recent studies supporting this newly uncovered function of the NMD pathway as a defense barrier that viruses must overcome in order to replicate.
Collapse
Affiliation(s)
- Vincent Mocquet
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique , Ecole Normale Supérieure, Lyon, France
| | - Sebastien Durand
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique , Ecole Normale Supérieure, Lyon, France
| | - Pierre Jalinot
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique , Ecole Normale Supérieure, Lyon, France
| |
Collapse
|
22
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|
23
|
Garcia D, Garcia S, Voinnet O. Nonsense-mediated decay serves as a general viral restriction mechanism in plants. Cell Host Microbe 2014; 16:391-402. [PMID: 25155460 PMCID: PMC7185767 DOI: 10.1016/j.chom.2014.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/16/2014] [Accepted: 07/14/2014] [Indexed: 11/17/2022]
Abstract
(+)strand RNA viruses have to overcome various points of restriction in the host to establish successful infection. In plants, this includes RNA silencing. To uncover additional bottlenecks to RNA virus infection, we genetically attenuated the impact of RNA silencing on transgenically expressed Potato virus X (PVX), a (+)strand RNA virus that replicates in Arabidopsis. A genetic screen in this sensitized background uncovered how nonsense-mediated decay (NMD), a host RNA quality control mechanism, recognizes and eliminates PVX RNAs with internal termination codons and long 3′ UTRs. NMD also operates in natural infection contexts, and while some viruses have evolved genome expression strategies to overcome this process altogether, the virulence of NMD-activating viruses entails their ability to directly suppress NMD or to promote an NMD-unfavorable cellular state. These principles of induction, evasion, and suppression define NMD as a general viral restriction mechanism in plants that also likely operates in animals. A sensitized genetic screen for modifiers of (+)strand RNA virus accumulation in Arabidopsis The host nonsense-mediated decay (NMD) pathway restricts PVX during natural infection NMD targets viral RNAs containing internal termination codons and long 3′ UTRs Some viruses have evolved to evade NMD altogether, while others may suppress NMD actively
Collapse
Affiliation(s)
- Damien Garcia
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique, UPR 2357, 67084 Strasbourg, France.
| | - Shahinez Garcia
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique, UPR 2357, 67084 Strasbourg, France
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique, UPR 2357, 67084 Strasbourg, France; Swiss Federal Institute of Technology Zurich, Department of Biology, Universitätstrasse 2, 8092 Zürich, Switzerland.
| |
Collapse
|
24
|
Quek BL, Beemon K. Retroviral strategy to stabilize viral RNA. Curr Opin Microbiol 2014; 18:78-82. [PMID: 24632073 DOI: 10.1016/j.mib.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
Unspliced Rous sarcoma virus (RSV) retroviral mRNA undergoes nonsense-mediated RNA decay (NMD) if it has premature termination codons in the gag gene. However, its normal gag termination codon is not subject to NMD despite being 7kb from the 3' poly(A) sequence. An RNA stability element (RSE) has been identified immediately downstream of gag in the RSV genome. It appears to determine the proper context for translation termination and protects the RNA from NMD. The viral stability element may prevent Up-frameshift 1 (Upf1) protein from interacting with the terminating ribosome and release factors to initiate NMD.
Collapse
Affiliation(s)
- Bao Lin Quek
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Karen Beemon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
25
|
Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet 2013; 29:691-9. [PMID: 24091060 DOI: 10.1016/j.tig.2013.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
The decay rate of an mRNA and the efficiency with which it is translated are key determinants of eukaryotic gene expression. Although it was once thought that mRNA stability and translational efficiency were directly linked, the interrelationships between the two processes are considerably more complex. The decay of individual mRNAs can be triggered or antagonized by translational impairment, and alterations in the half-life of certain mRNAs can even alter translational fidelity. In this review we consider whether mRNA translation and turnover are distinct or overlapping phases of an mRNA life cycle, and then address some of the many ways in which the two processes influence each other in eukaryotic cells.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
26
|
Lorgeoux RP, Guo F, Liang C. From promoting to inhibiting: diverse roles of helicases in HIV-1 Replication. Retrovirology 2012; 9:79. [PMID: 23020886 PMCID: PMC3484045 DOI: 10.1186/1742-4690-9-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/22/2012] [Indexed: 01/09/2023] Open
Abstract
Helicases hydrolyze nucleotide triphosphates (NTPs) and use the energy to modify the structures of nucleic acids. They are key players in every cellular process involving RNA or DNA. Human immunodeficiency virus type 1 (HIV-1) does not encode a helicase, thus it has to exploit cellular helicases in order to efficiently replicate its RNA genome. Indeed, several helicases have been found to specifically associate with HIV-1 and promote viral replication. However, studies have also revealed a couple of helicases that inhibit HIV-1 replication; these findings suggest that HIV-1 can either benefit from the function of cellular helicases or become curtailed by these enzymes. In this review, we focus on what is known about how a specific helicase associates with HIV-1 and how a distinct step of HIV-1 replication is affected. Despite many helicases having demonstrated roles in HIV-1 replication and dozens of other helicase candidates awaiting to be tested, a deeper appreciation of their involvement in the HIV-1 life cycle is hindered by our limited knowledge at the enzymatic and molecular levels regarding how helicases shape the conformation and structure of viral RNA-protein complexes and how these conformational changes are translated into functional outcomes in the context of viral replication.
Collapse
Affiliation(s)
- Rene-Pierre Lorgeoux
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, H3T 1E2, Quebec, Canada
| | | | | |
Collapse
|
27
|
Sharma A, Yilmaz A, Marsh K, Cochrane A, Boris-Lawrie K. Thriving under stress: selective translation of HIV-1 structural protein mRNA during Vpr-mediated impairment of eIF4E translation activity. PLoS Pathog 2012; 8:e1002612. [PMID: 22457629 PMCID: PMC3310836 DOI: 10.1371/journal.ppat.1002612] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection. Retroviruses are intracellular parasites that utilize the host translation machinery to catalyze viral protein synthesis. The activity of the translation machinery fluctuates during cell cycle progression and is reduced in the G2/M phase. HIV-1 infection causes the cells to arrest in the G2/M phase, which has the potential to alter the activity of the translation machinery. Herein several lines of evidence demonstrated that lymphocyte mRNA translation is suppressed by the action of HIV-1 accessory protein Vpr. The molecular basis of translation suppression is reduced activity of the rate-limiting translation intitation factor, eIF4E. However, synthesis of the viral structural proteins is sustained and is due to the difference in composition of the viral and cellular mRNA-ribonucleoprotein complexes. Both cellular and completely spliced viral mRNAs are predominantly associated with the cytoplasmic cap binding protein, eIF4E. In contrast, unspliced HIV-1 mRNAs are predominantly associated with the components of the nuclear cap binding complex (CBC). The retention of CBC on the viral mRNAs provides a mechanism to sustain viral protein synthesis. This newly characterized interface of the virus-host-protein synthesis machinery is likely a cellular adaptation used to enable synthesis of proteins that reengage the cell cycle and facilitate recovery from stress.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Alper Yilmaz
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kim Marsh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Withers JB, Beemon KL. The structure and function of the rous sarcoma virus RNA stability element. J Cell Biochem 2012; 112:3085-92. [PMID: 21769913 DOI: 10.1002/jcb.23272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | | |
Collapse
|
29
|
Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J, Svoboda J, Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol 2012; 86:2021-30. [PMID: 22171251 PMCID: PMC3302400 DOI: 10.1128/jvi.05771-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/30/2011] [Indexed: 01/10/2023] Open
Abstract
The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups. The host range expansion of the ancestral virus might have been driven by gradual evolution of resistance in host cells, and the resistance alleles in all three receptor loci have been identified. Here, we characterized two alleles of the tva receptor gene with similar intronic deletions comprising the deduced branch-point signal within the first intron and leading to inefficient splicing of tva mRNA. As a result, we observed decreased susceptibility to subgroup A ASLV in vitro and in vivo. These alleles were independently found in a close-bred line of domestic chicken and Indian red jungle fowl (Gallus gallus murghi), suggesting that their prevalence might be much wider in outbred chicken breeds. We identified defective splicing to be a mechanism of resistance to ASLV and conclude that such a type of mutation could play an important role in virus-host coevolution.
Collapse
Affiliation(s)
- Markéta Reinišová
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|