1
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
2
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
3
|
Whitehead JG, Worrell T, Socha JJ. Mallard landing behavior on water follows a -constant braking strategy. J Exp Biol 2023; 226:287071. [PMID: 36807532 DOI: 10.1242/jeb.244256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023]
Abstract
Many flying animals use optic flow to control their flight. During landing maneuvers, pigeons, hummingbirds, bats, Draco lizards and bees use the -constant braking strategy. This strategy regulates the approach by keeping the ratio of distance to an object and the rate of change of that distance constant. In keeping this ratio, , constant, a variety of deceleration profiles can lead to different collision avoidance behaviors. The landing behaviors listed above all qualify as controlled collisions, where the animal is decelerating into the object. We examined whether the same regulatory strategy is employed by mallards when landing on water. Video of mallard landing behavior was recorded at a local pond and digitized. Kinematic and τ parameters were calculated for each landing (N=177). The Pearson correlation coefficient for τ with respect to time to land was 0.99±0.02, indicating mallards employ a controlled-collision strategy. This result implies regulation by the birds to fix as constant while landing (on average, 0.90±0.13). In comparison with other active flyers, mallards use a higher value of when landing (0.775±0.109, 0.710±0.132 and 0.702±0.052 for pigeons, hummingbirds and bats, respectively). This higher may reflect physical differences in substrate from solid to liquid. The higher compliance of water in comparison to a solid substrate may reduce impact forces that could be injurious on a solid substrate, thereby enabling mallards to approach faster and expend less energy for costly, slow flight.
Collapse
Affiliation(s)
- John G Whitehead
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Terrell Worrell
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
5
|
Bianco G, Köhler RC, Ilieva M, Åkesson S. The importance of time of day for magnetic body alignment in songbirds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:135-144. [PMID: 34997291 PMCID: PMC8918448 DOI: 10.1007/s00359-021-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 10/25/2022]
Abstract
Spontaneous magnetic alignment is the simplest known directional response to the geomagnetic field that animals perform. Magnetic alignment is not a goal directed response and its relevance in the context of orientation and navigation has received little attention. Migratory songbirds, long-standing model organisms for studying magnetosensation, have recently been reported to align their body with the geomagnetic field. To explore whether the magnetic alignment behaviour in songbirds is involved in the underlying mechanism for compass calibration, which have been suggested to occur near to sunset, we studied juvenile Eurasian reed warblers (Acrocephalus scirpaceus) captured at stopover during their first autumn migration. We kept one group of birds in local daylight conditions and an experimental group under a 2 h delayed sunset. We used an ad hoc machine learning algorithm to track the birds' body alignment over a 2-week period. Our results show that magnetic body alignment occurs prior to sunset, but shifts to a more northeast-southwest alignment afterwards. Our findings support the hypothesis that body alignment could be associated with how directional celestial and magnetic cues are integrated in the compass of migratory birds.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Robin Clemens Köhler
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
6
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
7
|
Bianco G, Köhler RC, Ilieva M, Åkesson S. Magnetic body alignment in migratory songbirds: a computer vision approach. ACTA ACUST UNITED AC 2019; 222:jeb.196469. [PMID: 30728159 DOI: 10.1242/jeb.196469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 11/20/2022]
Abstract
Several invertebrate and vertebrate species have been shown to align their body relative to the geomagnetic field. Many hypotheses have been proposed to explain the adaptive significance of magnetic body alignment outside the context of navigation. However, experimental evidence to investigate alternative hypotheses is still limited. We present a new setup to track the preferential body alignment relative to the geomagnetic field in captive animals using computer vision. We tested our method on three species of migratory songbirds and provide evidence that they align their body with the geomagnetic field. We suggest that this behaviour is involved in the underlying mechanism for compass orientation and calibration, which may occur near to sunrise and sunset periods. Our method could easily be extended to other species and used to test a large set of hypotheses to explain the mechanisms behind the magnetic body alignment and the magnetic sense in general.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Robin Clemens Köhler
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden.,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., 1113 Sofia, Bulgaria
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| |
Collapse
|
8
|
Ectosymbionts alter spontaneous responses to the Earth's magnetic field in a crustacean. Sci Rep 2019; 9:3105. [PMID: 30816116 PMCID: PMC6395607 DOI: 10.1038/s41598-018-38404-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.
Collapse
|
9
|
Martini S, Begall S, Findeklee T, Schmitt M, Malkemper EP, Burda H. Dogs can be trained to find a bar magnet. PeerJ 2018; 6:e6117. [PMID: 30588405 PMCID: PMC6301327 DOI: 10.7717/peerj.6117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetoreception, the ability to sense the Earth’s magnetic field (MF), is a widespread phenomenon in the animal kingdom. In 1966, the first report on a magnetosensitive vertebrate, the European robin (Erithacus rubecula), was published. After that, numerous further species of different taxa have been identified to be magnetosensitive as well. Recently, it has been demonstrated that domestic dogs (Canis lupus familiaris) prefer to align their body axis along the North–South axis during territorial marking under calm MF conditions and that they abandon this preference when the Earth’s MF is unstable. In a further study conducting a directional two-choice-test, dogs showed a spontaneous preference for the northern direction. Being designated as putatively magnetosensitive and being also known as trainable for diverse choice and search tests, dogs seem to be suitable model animals for a direct test of magnetoreception: learning to find a magnet. Using operant conditioning dogs were trained to identify the MF of a bar magnet in a three-alternative forced-choice experiment. We excluded visual cues and used control trials with food treats to test for the role of olfaction in finding the magnet. While 13 out of 16 dogs detected the magnet significantly above chance level (53–73% success rate), none of the dogs managed to do so in finding the food treat (23–40% success rate). In a replication of the experiment under strictly blinded conditions five out of six dogs detected the magnet above chance level (53–63% success rate). These experiments support the existence of a magnetic sense in domestic dogs. Whether the sense enables dogs to perceive MFs as weak as the Earth’s MF, if they use it for orientation, and by which mechanism the fields are perceived remain open questions.
Collapse
Affiliation(s)
- Sabine Martini
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | - Marcus Schmitt
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - E Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Malewski S, Begall S, Schleich CE, Antenucci CD, Burda H. Do subterranean mammals use the Earth's magnetic field as a heading indicator to dig straight tunnels? PeerJ 2018; 6:e5819. [PMID: 30402349 PMCID: PMC6215444 DOI: 10.7717/peerj.5819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022] Open
Abstract
Subterranean rodents are able to dig long straight tunnels. Keeping the course of such "runways" is important in the context of optimal foraging strategies and natal or mating dispersal. These tunnels are built in the course of a long time, and in social species, by several animals. Although the ability to keep the course of digging has already been described in the 1950s, its proximate mechanism could still not be satisfactorily explained. Here, we analyzed the directional orientation of 68 burrow systems in five subterranean rodent species (Fukomys anselli, F. mechowii, Heliophobius argenteocinereus, Spalax galili, and Ctenomys talarum) on the base of detailed maps of burrow systems charted within the framework of other studies and provided to us. The directional orientation of the vast majority of all evaluated burrow systems on the individual level (94%) showed a significant deviation from a random distribution. The second order statistics (averaging mean vectors of all the studied burrow systems of a respective species) revealed significant deviations from random distribution with a prevalence of north-south (H. argenteocinereus), NNW-SSE (C. talarum), and NE-SW (Fukomys mole-rats) oriented tunnels. Burrow systems of S. galili were randomly oriented. We suggest that the Earth's magnetic field acts as a common heading indicator, facilitating to keep the course of digging. This study provides a field test and further evidence for magnetoreception and its biological meaning in subterranean mammals. Furthermore, it lays the foundation for future field experiments.
Collapse
Affiliation(s)
- Sandra Malewski
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
- Department of Game Management and Wildlife Biology, Czech University of Agriculture, Prague, Czech Republic
| | - Cristian E. Schleich
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - C. Daniel Antenucci
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Hynek Burda
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
- Department of Game Management and Wildlife Biology, Czech University of Agriculture, Prague, Czech Republic
| |
Collapse
|
11
|
Rodríguez MG, de Miguel Águeda FJ. Body orientation of sheep in herds. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2017.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Weijers D, Hemerik L, Heitkönig IMA. An experimental approach in revisiting the magnetic orientation of cattle. PLoS One 2018; 13:e0187848. [PMID: 29641517 PMCID: PMC5894954 DOI: 10.1371/journal.pone.0187848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022] Open
Abstract
In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations—excluding the hottest part of the day—of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals.
Collapse
Affiliation(s)
- Debby Weijers
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Lia Hemerik
- Biometris, Wageningen University and Research, Department of Mathematical and Statistical Methods, Wageningen, The Netherlands
| | | |
Collapse
|
13
|
Painter MS, Davis M, Ganesh S, Rak E, Brumet K, Bayne H, Malkemper EP, Phillips JB. Evidence for plasticity in magnetic nest-building orientation in laboratory mice. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Čapek F, Průcha J, Socha V, Hart V, Burda H. Directional orientation of pheasant chicks at the drinking dish and its potential for research on avian magnetoreception. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i3.a5.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Jaroslav Průcha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vladimír Socha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University Duisburg-Essen, 451 17 Essen, Germany
| |
Collapse
|
15
|
Pleskač L, Hart V, Nováková P, Painter MS. Spatial orientation of foraging corvids consistent with spontaneous magnetic alignment responses observed in a variety of free-roaming vertebrates. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i2.a3.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lukáš Pleskač
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Michael S. Painter
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| |
Collapse
|
16
|
Nováková P, Kořanová D, Begall S, Malkemper EP, Pleskač L, Čapek F, Červený J, Hart V, Hartová V, Husinec V, Burda H. Direction indicator and magnetic compass-aided tracking of the sun by flamingos? FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i2.a2.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Diana Kořanová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Erich P. Malkemper
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lukáš Pleskač
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Jaroslav Červený
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Veronika Hartová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Václav Husinec
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
17
|
Spontaneous magnetic alignment behaviour in free-living lizards. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 104:13. [DOI: 10.1007/s00114-017-1439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022]
|
18
|
Obleser P, Hart V, Malkemper EP, Begall S, Holá M, Painter MS, Červený J, Burda H. Compass-controlled escape behavior in roe deer. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
|
20
|
Malkemper EP, Painter MS, Landler L. Shifted magnetic alignment in vertebrates: Evidence for neural lateralization? J Theor Biol 2016; 399:141-7. [PMID: 27059891 DOI: 10.1016/j.jtbi.2016.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/13/2016] [Accepted: 03/28/2016] [Indexed: 11/15/2022]
Abstract
A wealth of evidence provides support for magnetic alignment (MA) behavior in a variety of disparate species within the animal kingdom, in which an animal, or a group of animals, show a tendency to align the body axis in a consistent orientation relative to the geomagnetic field lines. Interestingly, among vertebrates, MA typically coincides with the north-south magnetic axis, however, the mean directional preferences of an individual or group of organisms is often rotated clockwise from the north-south axis. We hypothesize that this shift is not a coincidence, and future studies of this subtle, yet consistent phenomenon may help to reveal some properties of the underlying sensory or processing mechanisms, that, to date, are not well understood. Furthermore, characterizing the fine structure exhibited in MA behaviors may provide key insights to the biophysical substrates mediating magnetoreception in vertebrates. Therefore, in order to determine if a consistent shift is exhibited in taxonomically diverse vertebrates, we performed a meta-analysis on published MA datasets from 23 vertebrate species that exhibited an axial north-south preference. This analysis revealed a significant clockwise shift from the north-south magnetic axis. We summarize and discuss possible competing hypotheses regarding the proximate mechanisms underlying the clockwise shifted MA and conclude that the most likely cause of such a shift would be a lateralization in central processing of magnetic information.
Collapse
Affiliation(s)
- E Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse. 2, 45117 Essen, Germany; Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
| | - Michael S Painter
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lukas Landler
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
21
|
Malkemper EP, Eder SHK, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci Rep 2015; 4:9917. [PMID: 25923312 PMCID: PMC4413948 DOI: 10.1038/srep09917] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal.
Collapse
Affiliation(s)
- E Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Stephan H K Eder
- Department of Earth and Environmental Sciences, Geophysics, Munich University, 80333 Munich, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael Winklhofer
- 1] Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany [2] Department of Earth and Environmental Sciences, Geophysics, Munich University, 80333 Munich, Germany
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Hynek Burda
- 1] Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany [2] Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic [3] Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
22
|
|
23
|
Hart V, Nováková P, Malkemper EP, Begall S, Hanzal V, Ježek M, Kušta T, Němcová V, Adámková J, Benediktová K, Červený J, Burda H. Dogs are sensitive to small variations of the Earth's magnetic field. Front Zool 2013; 10:80. [PMID: 24370002 PMCID: PMC3882779 DOI: 10.1186/1742-9994-10-80] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Several mammalian species spontaneously align their body axis with respect to the Earth’s magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. Results Dogs preferred to excrete with the body being aligned along the North–South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. Conclusions It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are frequently compromised by scatter.
Collapse
Affiliation(s)
- Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Erich Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Vladimír Hanzal
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Tomáš Kušta
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Veronika Němcová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Jana Adámková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Kateřina Benediktová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Jaroslav Červený
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic.,Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|