1
|
Moiron M, Bouwhuis S. Age-dependent shaping of the social environment in a long-lived seabird: a quantitative genetic approach. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220465. [PMID: 39463241 PMCID: PMC11513638 DOI: 10.1098/rstb.2022.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/29/2024] Open
Abstract
Individual differences in social behaviour can result in fine-scale variation in spatial distribution and, hence, in the social environment experienced. Given the expected fitness consequences associated with differences in social environments, it is imperative to understand the factors that shape them. One potential such factor is age. Age-specific social behaviour-often referred to as 'social ageing'-has only recently attracted attention, requiring more empirical work across taxa. Here, we use 29 years of longitudinal data collected in a pedigreed population of long-lived, colonially breeding common terns (Sterna hirundo) to investigate sources of variation in, and quantitative genetic underpinnings of, an aspect of social ageing: the shaping of the social environment experienced, using the number of neighbours during breeding as a proxy. Our analyses reveal age-specific declines in the number of neighbours during breeding, as well as selective disappearance of individuals with a high number of neighbours. Moreover, we find this social trait, as well as individual variation in the slope of its age-specific decline, to be heritable. These results suggest that social ageing might underpin part of the variation in the overall multicausal ageing phenotype, as well as undergo microevolution, highlighting the potential role of social ageing as a facilitator for, or constraint of, the evolutionary potential of natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Maria Moiron
- Institute of Avian Research, Wilhelmshaven26386, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld33501, Germany
| | | |
Collapse
|
2
|
Mitchell DJ, Beckmann C, Biro PA. Maintenance of Behavioral Variation under Predation Risk: Effects on Personality, Plasticity, and Predictability. Am Nat 2024; 203:347-361. [PMID: 38358809 DOI: 10.1086/728421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractClassic evolutionary theory predicts that predation will shift trait means and erode variance within prey species; however, several studies indicate higher behavioral trait variance and trait integration in high-predation populations. These results come predominately from field-sampled animals comparing low- and high-predation sites and thus cannot isolate the role of predation from other ecological factors, including density effects arising from higher predation. Here, we study the role of predation on behavioral trait (co)variation in experimental populations of guppies (Poecilia reticulata) living with and without a benthic ambush predator (Jaguar cichlid) to better evaluate the role of predation and where density was equalized among replicates twice per year. At 2.5 years after introduction of the predators (∼10 overlapping generations), 40 males were sampled from each of the six replicate populations and extensively assayed for activity rates, water column use, and latency to feed following disturbance. Individual variation was pronounced in both treatments, with substantial individual variation in means, temporal plasticity, and predictability (inverse residual variance). Predators had little effect on mean behavior, although there was some evidence for greater use of the upper water column in predator-exposed fish. There was greater variance among individuals in water column use in predator-exposed fish, and they habituated more quickly over time; individuals higher in the water column fed slower and had a reduced positive correlation with activity, although again this effect was time specific. Predators also affected the integration of personality and plasticity-among-individual variances in water column use increased, and those in activity decreased, through time-which was absent in controls. Our results contrast with the extensive guppy literature showing rapid evolution in trait means, demonstrating either increases or maintenance of behavioral variance under predation.
Collapse
|
3
|
Stamps JA, Biro PA. Time-specific convergence and divergence in individual differences in behavior: Theory, protocols and analyzes. Ecol Evol 2023; 13:e10615. [PMID: 38034332 PMCID: PMC10682899 DOI: 10.1002/ece3.10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Over the years, theoreticians and empiricists working in a wide range of disciplines, including physiology, ethology, psychology, and behavioral ecology, have suggested a variety of reasons why individual differences in behavior might change over time, such that different individuals become more similar (convergence) or less similar (divergence) to one another. Virtually none of these investigators have suggested that convergence or divergence will continue forever, instead proposing that these patterns will be restricted to particular periods over the course of a longer study. However, to date, few empiricists have documented time-specific convergence or divergence, in part because the experimental designs and statistical methods suitable for describing these patterns are not widely known. Here, we begin by reviewing an array of influential hypotheses that predict convergence or divergence in individual differences over timescales ranging from minutes to years, and that suggest how and why such patterns are likely to change over time (e.g., divergence followed by maintenance). Then, we describe experimental designs and statistical methods that can be used to determine if (and when) individual differences converged, diverged, or were maintained at the same level at specific periods during a longitudinal study. Finally, we describe why the concepts described herein help explain the discrepancy between what theoreticians and empiricists mean when they describe the "emergence" of individual differences or personality, how they might be used to study situations in which convergence and divergence patterns alternate over time, and how they might be used to study time-specific changes in other attributes of behavior, including individual differences in intraindividual variability (predictability), or genotypic differences in behavior.
Collapse
Affiliation(s)
- Judy A. Stamps
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | - Peter A. Biro
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
4
|
Temporal repeatability of behaviour in a lizard: implications for behavioural syndrome studies. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
AbstractIt is well established that, across taxa, individuals within populations exhibit consistent differences in their behaviour across time and/or contexts. Further, the functional coupling of traits may result in the formation of a behavioural syndrome. Despite extensive evidence on the existence of consistent among-individual differences in behaviour and behavioural syndromes in the animal realm, these findings are predominately based upon short-term assessments, leading to questions regarding their stability over longer periods. Understanding if these estimates are temporally stable would allow predictions of individual behaviour to be made using short-term repeated measures. Here, we used 57 adult male delicate skinks (Lampropholis delicata) to evaluate the stability of behavioural variation observed both among (animal personality and behavioural plasticity) and within individuals (behavioural predictability), as well as behavioural syndromes, across short (four weeks) and long (five months) timeframes. To do so, we repeatedly assayed activity, exploration, and boldness five times per each individual. Overall, our study revealed complex patterns of behavioural variation and trait (co)variation over time. Activity was always repeatable across time intervals, whereas behavioural differences among individuals in exploration and boldness were not consistent. Yet a behavioural syndrome between activity and exploration was detected at both shorter and longer temporal scales, suggesting that syndrome structure in these traits does not vary as a function of time. Our findings indicate that, at least for some traits (e.g. activity) and studies, short-term measures may be adequate in serving as a proxy for long-term variation in individual behaviour, and to reveal the existence of behavioural syndromes at the population level.
Collapse
|
5
|
De Meester G, Pafilis P, Vasilakis G, Van Damme R. Exploration and spatial cognition show long-term repeatability but no heritability in the Aegean wall lizard. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Lifetime stability of social traits in bottlenose dolphins. Commun Biol 2021; 4:759. [PMID: 34145380 PMCID: PMC8213821 DOI: 10.1038/s42003-021-02292-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Behavioral phenotypic traits or “animal personalities” drive critical evolutionary processes such as fitness, disease and information spread. Yet the stability of behavioral traits, essential by definition, has rarely been measured over developmentally significant periods of time, limiting our understanding of how behavioral stability interacts with ontogeny. Based on 32 years of social behavioral data for 179 wild bottlenose dolphins, we show that social traits (associate number, time alone and in large groups) are stable from infancy to late adulthood. Multivariate analysis revealed strong relationships between these stable metrics within individuals, suggesting a complex behavioral syndrome comparable to human extraversion. Maternal effects (particularly vertical social learning) and sex-specific reproductive strategies are likely proximate and ultimate drivers for these patterns. We provide rare empirical evidence to demonstrate the persistence of social behavioral traits over decades in a non-human animal. Taylor Evans et al. present analyses based on 32 years of observations of dolphin social behaviour in Shark Bay, Western Australia. Their findings indicate that individual social traits, such as preference for time spent alone vs in groups, remain stable throughout an individual’s lifetime, despite physiological and social changes through adulthood.
Collapse
|
7
|
The serotonin transporter gene and female personality variation in a free-living passerine. Sci Rep 2021; 11:8577. [PMID: 33883685 PMCID: PMC8060275 DOI: 10.1038/s41598-021-88225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Quantifying variation in behaviour-related genes provides insight into the evolutionary potential of repeatable among-individual variation in behaviour (i.e. personality). Yet, individuals typically also plastically adjust their behaviour in response to environmental conditions and/or age, thereby complicating the detection of genotype-phenotype associations. Here, using a population of free-living great tits (Parus major), we assessed the association between single nucleotide polymorphisms (SNPs) in the serotonin transporter gene (SERT) and two repeatable behavioural traits, i.e. female-female aggression and female hissing behaviour. For female-female aggression, a trait showing age-related plasticity, we found no evidence for associations with SERT SNPs, even when assessing potential age-dependent effects of SERT genotype on aggression. We also found no strong support for associations between SERT SNPs and hissing behaviour, yet we identified two synonymous polymorphisms (exon 13 SNP66 and exon 12 SNP144) of particular interest, each explaining about 1.3% of the total variation in hissing behaviour. Overall, our results contribute to the general understanding of the biological underpinning of complex behavioural traits and will facilitate further (meta-analytic) research on behaviour-related genes. Moreover, we emphasize that future molecular genetic studies should consider age-dependent genotype-phenotype associations for behavioural trait (co)variation, as this will vastly improve our understanding of the proximate causes and ultimate consequences of personality variation in natural populations.
Collapse
|
8
|
Suppression of personality variation in boldness during foraging in three-spined sticklebacks. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03007-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Consistent inter-individual variation in behaviour within a population, widely referred to as personality variation, can be affected by environmental context. Feedbacks between an individual’s behaviour and state can strengthen (positive feedback) or weaken (negative feedback) individual differences when experiences such as predator encounters or winning contests are dependent on behavioural type. We examined the influence of foraging on individual-level consistency in refuge use (a measure of risk-taking, i.e. boldness) in three-spined sticklebacks, Gasterosteus aculeatus, and particularly whether changes in refuge use depended on boldness measured under control conditions. In the control treatment trials with no food, individuals were repeatable in refuge use across repeated trials, and this behavioural consistency did not differ between the start and end of these trials. In contrast, when food was available, individuals showed a higher degree of consistency in refuge use at the start of the trials versus controls but this consistency significantly reduced by the end of the trials. The effect of the opportunity to forage was dependent on behavioural type, with bolder fish varying more in their refuge use between the start and the end of the feeding trials than shyer fish, and boldness positively predicted the likelihood of feeding at the start but not at the end of the trials. This suggests a state-behaviour feedback, but there was no overall trend in how bolder individuals changed their behaviour. Our study shows that personality variation can be suppressed in foraging contexts and a potential but unpredictable role of feedbacks between state and behaviour.
Significance statement
In this experimental study, we examined how foraging influences consistency in risk-taking in individual three-spined sticklebacks. We show that bolder individuals become less consistent in their risk-taking behaviour than shyer individuals during foraging. Some bolder individuals reinforce their risk-taking behaviour, suggesting a positive feedback between state and behaviour, while others converge on the behaviour of shyer individuals, suggesting a negative feedback. In support of a role of satiation in driving negative feedback effects, we found that bolder individuals were more likely to feed at the start but not at the end of the trials. Overall, our findings suggest that foraging can influence personality variation in risk-taking behaviour; however, the role of feedbacks may be unpredictable.
Collapse
|
9
|
Thys B, Pinxten R, Eens M. Long-term repeatability and age-related plasticity of female behaviour in a free-living passerine. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
de Jong ME, Nicolaus M, Fokkema RW, Loonen MJJE. State dependence explains individual variation in nest defence behaviour in a long-lived bird. J Anim Ecol 2021; 90:809-819. [PMID: 33340107 PMCID: PMC8048547 DOI: 10.1111/1365-2656.13411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Parental care, such as nest or offspring defence, is crucial for offspring survival in many species. Yet, despite its obvious fitness benefits, the level of defence can consistently vary between individuals of the same species. One prominent adaptive explanation for consistent individual differences in behaviours involves state dependency: relatively stable differences in individual state should lead to the emergence of repeatable behavioural variation whereas changes in state should lead to a readjustment of behaviour. Therefore, empirical testing of adaptive state dependence requires longitudinal data where behaviour and state of individuals of the same population are repeatedly measured. Here, we test if variation in states predicts nest defence behaviour (a ‘risky’ behaviour) in a long‐lived species, the barnacle goose Branta leucopsis. Adaptive models have predicted that an individual's residual reproductive value or ‘asset’ is an important state variable underlying variation in risk‐taking behaviour. Hence, we investigate how nest defence varies as a function of time of the season and individual age, two state variables that can vary between and within individuals and determine asset. Repeated measures of nest defence towards a human intruder (flight initiation distance or FID) of females of known age were collected during 15 breeding seasons. Increasing values of FID represent increasing shyness. We found that females strongly and consistently differed in FID within‐ and between‐years. As predicted by theory, females adjusted their behaviour to state by decreasing their FID with season and age. Decomposing these population patterns into within‐ and between‐individual effects showed that the state‐dependent change in FID was driven by individual plasticity in FID and that bolder females were more plastic than shyer females. This study shows that nest defence behaviour differs consistently among individuals and is adjusted to individual state in a direction predicted by adaptive personality theory.
Collapse
Affiliation(s)
- Margje E de Jong
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.,Arctic Centre, University of Groningen, Groningen, The Netherlands
| | - Marion Nicolaus
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Rienk W Fokkema
- Arctic Centre, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
11
|
Mitchell DJ, Houslay TM. Context-dependent trait covariances: how plasticity shapes behavioral syndromes. Behav Ecol 2020; 32:25-29. [PMID: 33708005 PMCID: PMC7937033 DOI: 10.1093/beheco/araa115] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/21/2023] Open
Abstract
The study of behavioral syndromes aims to understand among-individual correlations of behavior, yielding insights into the ecological factors and proximate constraints that shape behavior. In parallel, interest has been growing in behavioral plasticity, with results commonly showing that animals vary in their behavioral response to environmental change. These two phenomena are inextricably linked—behavioral syndromes describe cross-trait or cross-context correlations, while variation in behavioral plasticity describes variation in response to changing context. However, they are often discussed separately, with plasticity analyses typically considering a single trait (univariate) across environments, while behavioral trait correlations are studied as multiple traits (multivariate) under one environmental context. Here, we argue that such separation represents a missed opportunity to integrate these concepts. Through observations of multiple traits while manipulating environmental conditions, we can quantify how the environment shapes behavioral correlations, thus quantifying how phenotypes are differentially constrained or integrated under different environmental conditions. Two analytical options exist which enable us to evaluate the context dependence of behavioral syndromes—multivariate reaction norms and character state models. These models are largely two sides of the same coin, but through careful interpretation we can use either to shift our focus to test how the contextual environment shapes trait covariances.
Collapse
Affiliation(s)
- David J Mitchell
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B., Stockholm, Sweden
| | | |
Collapse
|
12
|
Rohrer KN, Ferkin MH. Long‐term repeatability and stability of three personality traits in meadow voles. Ethology 2020. [DOI: 10.1111/eth.13037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Karl N. Rohrer
- Department of Biological Sciences University of Memphis Memphis TN USA
| | - Michael H. Ferkin
- Department of Biological Sciences University of Memphis Memphis TN USA
| |
Collapse
|
13
|
Dingemanse NJ, Moiron M, Araya-Ajoy YG, Mouchet A, Abbey-Lee RN. Individual variation in age-dependent reproduction: Fast explorers live fast but senesce young? J Anim Ecol 2019; 89:601-613. [PMID: 31618450 DOI: 10.1111/1365-2656.13122] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/21/2019] [Indexed: 01/01/2023]
Abstract
Adaptive integration of life history and behaviour is expected to result in variation in the pace-of-life. Previous work focused on whether 'risky' phenotypes live fast but die young, but reported conflicting support. We posit that individuals exhibiting risky phenotypes may alternatively invest heavily in early-life reproduction but consequently suffer greater reproductive senescence. We used a 7-year longitudinal dataset with >1,200 breeding records of >800 female great tits assayed annually for exploratory behaviour to test whether within-individual age dependency of reproduction varied with exploratory behaviour. We controlled for biasing effects of selective (dis)appearance and within-individual behavioural plasticity. Slower and faster explorers produced moderate-sized clutches when young; faster explorers subsequently showed an increase in clutch size that diminished with age (with moderate support for declines when old), whereas slower explorers produced moderate-sized clutches throughout their lives. There was some evidence that the same pattern characterized annual fledgling success, if so, unpredictable environmental effects diluted personality-related differences in this downstream reproductive trait. Support for age-related selective appearance was apparent, but only when failing to appreciate within-individual plasticity in reproduction and behaviour. Our study identifies within-individual age-dependent reproduction, and reproductive senescence, as key components of life-history strategies that vary between individuals differing in risky behaviour. Future research should thus incorporate age-dependent reproduction in pace-of-life studies.
Collapse
Affiliation(s)
- Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Maria Moiron
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Campus CNRS, Montpellier, France
| | - Yimen G Araya-Ajoy
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,Center for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexia Mouchet
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany.,Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Robin N Abbey-Lee
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Mitchell DJ, Dujon AM, Beckmann C, Biro PA. Temporal autocorrelation: a neglected factor in the study of behavioral repeatability and plasticity. Behav Ecol 2019. [DOI: 10.1093/beheco/arz180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Quantifying individual variation in labile physiological or behavioral traits often involves repeated measures through time, so as to test for consistency of individual differences (often using repeatability, “R”) and/or individual differences in trendlines over time. Another form of temporal change in behavior is temporal autocorrelation, which predicts observations taken closely together in time to be correlated, leading to nonrandom residuals about individual temporal trendlines. Temporal autocorrelation may result from slowly changing internal states (e.g., hormone or energy levels), leading to slowly changing behavior. Autocorrelation is a well-known phenomenon, but has been largely neglected by those studying individual variation in behavior. Here, we provide two worked examples which show substantial temporal autocorrelation (r > 0.4) is present in spontaneous activity rates of guppies (Poecilia reticulata) and house mice (Mus domesticus) in stable laboratory conditions, even after accounting for temporal plasticity of individuals. Second, we show that ignoring autocorrelation does bias estimates of R and temporal reaction norm variances upwards, both in our worked examples and in separate simulations. This bias occurs due to the misestimation of individual-specific means and slopes. Given the increasing use of technologies that generate behavioral and physiological data at high sampling rates, we can now study among- and within-individual changes in behavior in more detailed ways, including autocorrelation, which we discuss from biological and methodological perspectives and provide recommendations and annotated R code to help researchers implement these models on their data.
Collapse
Affiliation(s)
- David J Mitchell
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B. SE-10691, Stockholm, Sweden
| | - Antoine M Dujon
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter A Biro
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
| |
Collapse
|
15
|
Pittet F, Tyson C, Herrington JA, Houdelier C, Lumineau S. Postnatal care generates phenotypic behavioural correlations in the Japanese quail. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2735-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Class B, Brommer JE, van Oers K. Exploratory behavior undergoes genotype-age interactions in a wild bird. Ecol Evol 2019; 9:8987-8994. [PMID: 31462997 PMCID: PMC6706179 DOI: 10.1002/ece3.5430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/06/2022] Open
Abstract
Animal personality traits are often heritable and plastic at the same time. Indeed, behaviors that reflect an individual's personality can respond to environmental factors or change with age. To date, little is known regarding personality changes during a wild animals' lifetime and even less about stability in heritability of behavior across ages. In this study, we investigated age-related changes in the mean and in the additive genetic variance of exploratory behavior, a commonly used measure of animal personality, in a wild population of great tits. Heritability of exploration is reduced in adults compared to juveniles, with a low genetic correlation across these age classes. A random regression animal model confirmed the occurrence of genotype-age interactions (G×A) in exploration, causing a decrease in additive genetic variance before individuals become 1 year old, and a decline in cross-age genetic correlations between young and increasingly old individuals. Of the few studies investigating G×A in behaviors, this study provides rare evidence for this phenomenon in an extensively studied behavior. We indeed demonstrate that heritability and cross-age genetic correlations in this behavior are not stable over an individual's lifetime, which can affect its potential response to selection. Because G×A is likely to be common in behaviors and have consequences for our understanding of the evolution of animal personality, more attention should be turned to this phenomenon in the future work.
Collapse
Affiliation(s)
- Barbara Class
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
17
|
The Female Perspective of Personality in a Wild Songbird: Repeatable Aggressiveness Relates to Exploration Behaviour. Sci Rep 2017; 7:7656. [PMID: 28794486 PMCID: PMC5550452 DOI: 10.1038/s41598-017-08001-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/07/2017] [Indexed: 12/05/2022] Open
Abstract
Males often express traits that improve competitive ability, such as aggressiveness. Females also express such traits but our understanding about why is limited. Intraspecific aggression between females might be used to gain access to reproductive resources but simultaneously incurs costs in terms of energy and time available for reproductive activities, resulting in a trade-off. Although consistent individual differences in female behaviour (i.e. personality) like aggressiveness are likely to influence these reproductive trade-offs, little is known about the consistency of aggressiveness in females. To quantify aggression we presented a female decoy to free-living female great tits (Parus major) during the egg-laying period, and assessed whether they were consistent in their response towards this decoy. Moreover, we assessed whether female aggression related to consistent individual differences in exploration behaviour in a novel environment. We found that females consistently differed in aggressiveness, although first-year females were on average more aggressive than older females. Moreover, conform life history theory predictions, ‘fast’ exploring females were more aggressive towards the decoy than ‘slow’ exploring females. Given that personality traits are often heritable, and correlations between behaviours can constrain short term adaptive evolution, our findings highlight the importance of studying female aggression within a multivariate behavioural framework.
Collapse
|
18
|
Rödel HG, Bautista A, Roder M, Gilbert C, Hudson R. Early development and the emergence of individual differences in behavior among littermates of wild rabbit pups. Physiol Behav 2017; 173:101-109. [DOI: 10.1016/j.physbeh.2017.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
|
19
|
Schuster AC, Zimmermann U, Hauer C, Foerster K. A behavioural syndrome, but less evidence for a relationship with cognitive traits in a spatial orientation context. Front Zool 2017; 14:19. [PMID: 28344631 PMCID: PMC5364594 DOI: 10.1186/s12983-017-0204-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animals show consistent individual behavioural differences in many species. Further, behavioural traits (personality traits) form behavioural syndromes, characterised by correlations between different behaviours. Mechanisms maintaining these correlations could be constrained due to underlying relationships with cognitive traits. There is growing evidence for the non-independence of animal personality and general cognitive abilities in animals, but so far, studies on the direction of the relationship between them revealed contradictory results. Still, it is hypothesised that individuals may exhibit consistent learning and decision styles. Fast behavioural types (consistently bolder and more active individuals) are expected to show faster learning styles. Slow behavioural types in contrast are assumed to learn slower but more accurately. This can be caused by a speed-accuracy trade-off that individuals face during decision making. We measured the repeatability of three personality and four spatial cognitive traits in adult Eurasian harvest mice (Micromys minutus). We analysed correlations among personality traits (behavioural syndrome). We further investigated the relationships between personality and spatial cognitive traits as a first step exploring the potential connection between personality and cognition in this species. RESULTS Our results showed that exploration, activity and boldness were repeatable in adult mice. Spatial recognition measured in a Y Maze was also significantly repeatable, as well as spatial learning performance and decision speed. We found no repeatability of decision accuracy. Harvest mice showed a behavioural syndrome as we observed strong positive correlations between personality traits. The speed-accuracy trade-off was not apparent within, nor between individuals. Nevertheless, we found weak evidence for a relationship between personality and spatial cognitive traits as fast behavioural types learned a spatial orientation task faster than slow types, and shyer harvest mice made decisions quicker than bolder mice. CONCLUSIONS Given these correlations, our data provided some first insights into the relationship between personality and spatial cognitive traits in harvest mice and will hopefully stimulate more studies in this field.
Collapse
Affiliation(s)
- Andrea C Schuster
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Uwe Zimmermann
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Carina Hauer
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Katharina Foerster
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Schuster AC, Carl T, Foerster K. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice. Naturwissenschaften 2017; 104:10. [PMID: 28236075 PMCID: PMC5325833 DOI: 10.1007/s00114-017-1430-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice (Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.
Collapse
Affiliation(s)
- Andrea C Schuster
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Teresa Carl
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Katharina Foerster
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
21
|
Thys B, Eens M, Aerts S, Delory A, Iserbyt A, Pinxten R. Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Emergence and development of personality over the ontogeny of fish in absence of environmental stress factors. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2206-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
|
24
|
Wexler Y, Subach A, Pruitt JN, Scharf I. Behavioral repeatability of flour beetles before and after metamorphosis and throughout aging. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2098-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Abstract
There is increasing interest in the proximate factors that underpin individual variation in suites of correlated behaviours. In this paper, we propose that dietary macronutrient composition, an underexplored environmental factor, might play a key role. Variation in macronutrient composition can lead to among-individual differentiation in single behaviours (‘personality’ ) as well as among-individual covariation between behaviours (‘behavioural syndromes’ ). Here, we argue that the nutritional balance during any life stage might affect the development of syndrome structure and the expression of genes with pleiotropic effects that influence development of multiple behaviours, hence genetic syndrome structure. We further suggest that males and females should typically differ in diet-dependent genetic syndrome structure despite a shared genetic basis. We detail how such diet-dependent multivariate gene-environment interactions can have major repercussions for the evolution of behavioural syndromes.
Collapse
Affiliation(s)
- Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany.,Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
26
|
Abstract
Development in many organisms appears to show evidence of sensitive windows—periods or stages in ontogeny in which individual experience has a particularly strong influence on the phenotype (compared to other periods or stages). Despite great interest in sensitive windows from both fundamental and applied perspectives, the functional (adaptive) reasons why they have evolved are unclear. Here we outline a conceptual framework for understanding when natural selection should favour changes in plasticity across development. Our approach builds on previous theory on the evolution of phenotypic plasticity, which relates individual and population differences in plasticity to two factors: the degree of uncertainty about the environmental conditions and the extent to which experiences during development (‘cues’) provide information about those conditions. We argue that systematic variation in these two factors often occurs within the lifetime of a single individual, which will select for developmental changes in plasticity. Of central importance is how informational properties of the environment interact with the life history of the organism. Phenotypes may be more or less sensitive to environmental cues at different points in development because of systematic changes in (i) the frequency of cues, (ii) the informativeness of cues, (iii) the fitness benefits of information and/or (iv) the constraints on plasticity. In relatively stable environments, a sensible null expectation is that plasticity will gradually decline with age as the developing individual gathers information. We review recent models on the evolution of developmental changes in plasticity and explain how they fit into our conceptual framework. Our aim is to encourage an adaptive perspective on sensitive windows in development.
Collapse
Affiliation(s)
- Tim W Fawcett
- Modelling Animal Decisions (MAD) Group, School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Willem E Frankenhuis
- Behavioural Science Institute, Radboud University Nijmegen, Montessorilaan 3, PO Box 9104, 6500 HE, Nijmegen, The Netherlands
| |
Collapse
|