1
|
Tej Kantu N, Osswald R, Kandel A, Kang J. Resist-as-Needed ADL Training With SPINDLE for Patients With Tremor. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1735-1748. [PMID: 38652620 DOI: 10.1109/tnsre.2024.3392615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Individuals with neurological disorders often exhibit altered manual dexterity and muscle weakness in their upper limbs. These motor impairments with tremor lead to severe difficulties in performing Activities of Daily Living (ADL). There is a critical need for ADL-focused robotic training that improves individual's strength when engaging with dexterous ADL tasks. This research introduces a new approach to training ADLs by employing a novel robotic rehabilitation system, Spherical Parallel INstrument for Daily Living Emulation (SPINDLE), which incorporates Virtual Reality (VR) to simulate ADL tasks. The study results present the feasibility of training individuals with movements similar to ADLs while interacting with the SPINDLE. A new game-based robotic training paradigm is suggested to perform ADL tasks at various intensity levels of resistance as needed. The proposed system can facilitate the training of various ADLs requiring 3-dimensional rotational movements by providing optimal resistance and visual feedback. We envision this system can be utilized as a table-top home device by restoring the impaired motor function of individuals with tremor and muscle weakness, guiding to improved ADL performance and quality of life.
Collapse
|
2
|
Dissanayake UC, Steuber V, Amirabdollahian F. EEG Spectral Feature Modulations Associated With Fatigue in Robot-Mediated Upper Limb Gross and Fine Motor Interactions. Front Neurorobot 2022; 15:788494. [PMID: 35126082 PMCID: PMC8812383 DOI: 10.3389/fnbot.2021.788494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
This paper investigates the EEG spectral feature modulations associated with fatigue induced by robot-mediated upper limb gross and fine motor interactions. Twenty healthy participants were randomly assigned to perform a gross motor interaction with HapticMASTER or a fine motor interaction with SCRIPT passive orthosis for 20 min or until volitional fatigue. Relative and ratio band power measures were estimated from the EEG data recorded before and after the robot-mediated interactions. Paired-samples t-tests found a significant increase in the relative alpha band power and a significant decrease in the relative delta band power due to the fatigue induced by the robot-mediated gross and fine motor interactions. The gross motor task also significantly increased the (θ + α)/β and α/β ratio band power measures, whereas the fine motor task increased the relative theta band power. Furthermore, the robot-mediated gross movements mostly changed the EEG activity around the central and parietal brain regions, whereas the fine movements mostly changed the EEG activity around the frontopolar and central brain regions. The subjective ratings suggest that the gross motor task may have induced physical fatigue, whereas the fine motor task may have induced mental fatigue. Therefore, findings affirm that changes to localised brain activity patterns indicate fatigue developed from the robot-mediated interactions. It can also be concluded that the regional differences in the prominent EEG spectral features are most likely due to the differences in the nature of the task (fine/gross motor and distal/proximal upper limb) that may have differently altered an individual's physical and mental fatigue level. The findings could potentially be used in future to detect and moderate fatigue during robot-mediated post-stroke therapies.
Collapse
Affiliation(s)
- Udeshika C. Dissanayake
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | | | | |
Collapse
|
3
|
Holanda LJ, Fernandes APM, de Amorim JA, Matias AM, Nunes Netto SP, Nagem DAP, Valentim RADM, Morya E, Lindquist AR. Adaptive Algorithms as Control Strategies of Smart Upper Limb Orthosis: A Protocol for a Systematic Scoping Review. Front Neurosci 2021; 15:660141. [PMID: 34025344 PMCID: PMC8138030 DOI: 10.3389/fnins.2021.660141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Adaptive algorithms for controlling orthosis emerged to overcome significant problems with automatic biosignal classification and personalized rehabilitation. Smart orthoses are evolving fast and need a better human-machine interaction performance since biosignals, feedback, and motor control dynamically change and must be adaptive. This manuscript outlines a scoping review protocol to systematically review the smart upper limb (UL) orthoses based on adaptive algorithms and feasibility tests. Materials and Methods: This protocol was developed based on the York framework. A field-specific structure was defined to achieve each phase. Eleven scientific databases (PubMed, Web of Science, SciELO, Koreamed, Jstage, AMED, CENTRAL, PEDro, IEEE, Scopus, and Arxiv) and five patent databases (Patentscope, Patentlens, Google Patents, Kripis, J-platpat) were searched. The developed framework will extract data (i.e., orthosis description, adaptive algorithms, tools used in the usability test, and benefits to the general population) from the selected studies using a rigorous approach. Data will be described quantitatively using frequency and trend analysis methods. Heterogeneity between the included studies will be assessed using the Chi-test and I-statistic. The risk of bias will be summarized using the latest Prediction Model Study Risk of Bias Assessment Tool. Discussion: This review will identify, map, and synthesize the advances about the description of adaptive algorithms for control strategies of smart UL orthosis using data extracted from patents and articles.
Collapse
Affiliation(s)
- Ledycnarf J Holanda
- Laboratory of Intervention and Analysis of Movement, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Paula M Fernandes
- Laboratory of Intervention and Analysis of Movement, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Júlia A de Amorim
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aryel M Matias
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Severino P Nunes Netto
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo A P Nagem
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ricardo A de M Valentim
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, Macaiba, Brazil
| | - Ana Raquel Lindquist
- Laboratory of Intervention and Analysis of Movement, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Yeganeh Doost M, Herman B, Denis A, Sapin J, Galinski D, Riga A, Laloux P, Bihin B, Vandermeeren Y. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: a randomized controlled trial. Neural Regen Res 2021; 16:1566-1573. [PMID: 33433485 PMCID: PMC8323667 DOI: 10.4103/1673-5374.301030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using robotic devices might improve recovery post-stroke, but the optimal way to apply robotic assistance has yet to be determined. The current study aimed to investigate whether training under the robotic active-assisted mode improves bimanual motor skill learning (biMSkL) more than training under the active mode in stroke patients. Twenty-six healthy individuals (HI) and 23 chronic hemiparetic stroke patients with a detectable lesion on MRI or CT scan, who demonstrated motor deficits in the upper limb, were randomly allocated to two parallel groups. The protocol included a two-day training on a new bimanual cooperative task, LIFT-THE-TRAY, under either the active or active-assisted modes (where assistance decreased in a pre-determined stepwise fashion) with the bimanual version of the REAplan® robotic device. The hypothesis was that the active-assisted mode would result in greater biMSkL than the active mode. The biMSkL was quantified by a speed-accuracy trade-off (SAT) before (T1) and immediately after (T2) training on days 1 and 2 (T3 and T4). The change in SAT after 2 days of training (T4/T1) indicated that both HI and stroke patients learned and retained the bimanual cooperative task. After 2 days of training, the active-assisted mode did not improve biMSkL more than the active mode (T4/T1) in HI nor stroke patients. Whereas HI generalized the learned bimanual skill to different execution speeds in both the active and active-assisted subgroups, the stroke patients generalized the learned skill only in the active subgroup. Taken together, the active-assisted mode, applied in a pre-determined stepwise decreasing fashion, did not improve biMSkL more than the active mode in HI and stroke subjects. Stroke subjects might benefit more from robotic assistance when applied “as-needed.” This study was approved by the local ethical committee (Comité d’éthique médicale, CHU UCL Namur, Mont-Godinne, Yvoir, Belgium; Internal number: 54/2010, EudraCT number: NUB B039201317382) on July 14, 2016 and was registered with ClinicalTrials.gov (Identifier: NCT03974750) on June 5, 2019.
Collapse
Affiliation(s)
- Maral Yeganeh Doost
- UCLouvain, CHU UCL Namur - site Mont-Godinne, Department of Neurology, Stroke Unit, Yvoir; UCLouvain, Institute of NeuroScience (IoNS), Clinical neuroscience division (NEUR) division, Brussels; UCLouvain, Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Benoît Herman
- UCLouvain, Louvain Bionics; UCLouvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Adrien Denis
- UCLouvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | | | | | - Audrey Riga
- UCLouvain, CHU UCL Namur - site Mont-Godinne, Department of Neurology, Stroke Unit, Yvoir; UCLouvain, Institute of NeuroScience (IoNS), Clinical neuroscience division (NEUR) division, Brussels; UCLouvain, Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Patrice Laloux
- UCLouvain, CHU UCL Namur - site Mont-Godinne, Department of Neurology, Stroke Unit, Yvoir; UCLouvain, Institute of NeuroScience (IoNS), Clinical neuroscience division (NEUR) division, Brussels, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur - site Mont-Godinne, Yvoir, Belgium
| | - Yves Vandermeeren
- UCLouvain, CHU UCL Namur - site Mont-Godinne, Department of Neurology, Stroke Unit, Yvoir; UCLouvain, Institute of NeuroScience (IoNS), Clinical neuroscience division (NEUR) division, Brussels; UCLouvain, Louvain Bionics, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Poyil AT, Steuber V, Amirabdollahian F. Influence of muscle fatigue on electromyogram-kinematic correlation during robot-assisted upper limb training. J Rehabil Assist Technol Eng 2020; 7:2055668320903014. [PMID: 32206337 PMCID: PMC7079312 DOI: 10.1177/2055668320903014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/30/2019] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Studies on adaptive robot-assisted upper limb training interactions do not often consider the implications of muscle fatigue sufficiently. METHODS To explore this, we initially assessed muscle fatigue in 10 healthy subjects using two electromyogram features, namely average power and median power frequency, during an assist-as-needed interaction with HapticMaster robot. Since robotic assistance resulted in a variable fatigue profile across participants, a completely tiring experiment, without a robot in the loop, was also designed to confirm the results. RESULTS A significant increase in average power and a decrease in median frequency were observed in the most active muscles. Average power in the frequency band of 0.8-2.5 Hz and median frequency in the band of 20-450 Hz are potential fatigue indicators. Also, comparing the Spearman's correlation coefficients (between the electromyogram average power and the kinematic force) across trials indicated that correlation was reduced as individual muscles were fatigued. CONCLUSIONS Confirming fatigue indicators, this study concludes that robotic assistance based on user's performance resulted in lesser muscle fatigue, which caused an increase in electromyogram-force correlation. We now intend to utilise the electromyogram and kinematic features for auto-adaptation of therapeutic human-robot interactions.
Collapse
Affiliation(s)
- Azeemsha T Poyil
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Volker Steuber
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
6
|
Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Robot-aided systems to support the physical rehabilitation of individuals with neurological impairment is one of the fields that has been widely developed in the last few decades. However, the adoption of these systems in clinical practice remains limited. In order to better understanding the causes of this limitation, a systematic review of robot-based systems focused on upper extremity rehabilitation is presented in this paper. A systematic search and review of related articles in the literature were conducted. The chosen works were analyzed according to the type of device, the data analysis capability, the therapy method, the human–robot interaction, the safety strategies, and the focus of treatment. As a conclusion, self-adaptation for personalizing the treatments, safeguarding and enhancing of patient–robot interaction towards training essential factors of movement generation into the same paradigm, or the use of lifelike environments in fully-immersive virtual reality for increasing the assimilation of motor gains could be relevant factors to develop more accepted robot-aided systems in clinical practice.
Collapse
|
7
|
An Orthopaedic Robotic-Assisted Rehabilitation Method of the Forearm in Virtual Reality Physiotherapy. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:7438609. [PMID: 30154992 PMCID: PMC6093033 DOI: 10.1155/2018/7438609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/28/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
The use of robotic rehabilitation in orthopaedics has been briefly explored. Despite its possible advantages, the use of computer-assisted physiotherapy of patients with musculoskeletal injuries has received little attention. In this paper, we detailed the development and evaluation of a robotic-assisted rehabilitation system as a new methodology of assisted physiotherapy in orthopaedics. The proposal consists of an enhanced end-effector haptic interface mounted in a passive mechanism for allowing patients to perform upper-limb exercising and integrates virtual reality games conceived explicitly for assisting the treatment of the forearm after injuries at the wrist or elbow joints. The present methodology represents a new approach to assisted physiotherapy for strength and motion recovery of wrist pronation/supination and elbow flexion-extension movements. We design specific game scenarios enriched by proprioceptive and haptic force feedback in three training modes: passive, active, and assisted exercising. The system allows the therapist to tailor the difficulty level on the observed motion capacity of the patients and the kinesiology measurements provided by the system itself. We evaluated the system through the analysis of the muscular activity of two healthy subjects, showing that the system can assign significant working loads during typical physiotherapy treatment profiles. Subsequently, a group of ten patients undergoing manual orthopaedic rehabilitation of the forearm tested the system, under similar conditions at variable intensities. Patients tolerated changes in difficulty through the tests, and they expressed a favourable opinion of the system through the administered questionnaires, which indicates that the system was well accepted and that the proposed methodology was feasible for the case study for subsequently controlled trials. Finally, a predictive model of the performance score in the form of a linear combination of kinesiology observations was implemented in function of difficult training parameters, as a way of systematically individualising the training during the therapy, for subsequent studies.
Collapse
|
8
|
Liu LY, Li Y, Lamontagne A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. J Neuroeng Rehabil 2018; 15:65. [PMID: 29973250 PMCID: PMC6033222 DOI: 10.1186/s12984-018-0408-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Despite upper extremity function playing a crucial role in maintaining one's independence in activities of daily living, upper extremity impairments remain one of the most prevalent post-stroke deficits. To enhance the upper extremity motor recovery and performance among stroke survivors, two training paradigms in the fields of robotics therapy involving modifying haptic feedback were proposed: the error-augmentation (EA) and error-reduction (ER) paradigms. There is a lack of consensus, however, as to which of the two paradigms yields superior training effects. This systematic review aimed to determine (i) whether EA is more effective than conventional repetitive practice; (ii) whether ER is more effective than conventional repetitive practice and; (iii) whether EA is more effective than ER in improving post-stroke upper extremity motor recovery and performance. The study search and selection process as well as the ratings of methodological quality of the articles were conducted by two authors separately, and the results were then compared and discussed among the two reviewers. Findings were analyzed and synthesized using the level of evidence. By August 1st 2017, 269 articles were found after searching 6 databases, and 13 were selected based on criteria such as sample size, type of participants recruited, type of interventions used, etc. Results suggest, with a moderate level of evidence, that EA is overall more effective than conventional repetitive practice (motor recovery and performance) and ER (motor performance only), while ER appears to be no more effective than conventional repetitive practice. However, intervention effects as measured using clinical outcomes were under most instance not 'clinically meaningful' and effect sizes were modest. While stronger evidence is required to further support the efficacy of error modification therapies, the influence of factors related to the delivery of the intervention (such as intensity, duration) and personal factors (such as stroke severity and time of stroke onset) deserves further investigations as well.
Collapse
Affiliation(s)
- Le Yu Liu
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada. .,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada.
| | - Youlin Li
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada.,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada.,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada
| |
Collapse
|
9
|
Grimm F, Naros G, Gharabaghi A. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front Neurosci 2016; 10:518. [PMID: 27895550 PMCID: PMC5108796 DOI: 10.3389/fnins.2016.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| |
Collapse
|
10
|
Kato N, Tanaka T, Sugihara S, Shimizu K, Kudo N. A study of the effect of visual depth information on upper limb movement by use of measurement of smoothness. J Phys Ther Sci 2016; 28:1134-41. [PMID: 27190441 PMCID: PMC4868201 DOI: 10.1589/jpts.28.1134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022] Open
Abstract
[Purpose] This study verified that the smoothness of reaching movements is able to quantitatively evaluate the effects of two- and three-dimensional images on movement in healthy people. In addition, clinical data of cerebrovascular accident patients were also analyzed by the same method. [Subjects] Ten healthy adult volunteers and two male patients with previous cerebrovascular accidents participated. [Methods] The subjects were tasked with reaching for objects shown on a display. The target and virtual limb, rendered with computer graphics, were shown on the display. Movements of the virtual limb were synchronized with those of the subject. Healthy subjects reached for targets with their dominant arm, and cerebrovascular accident patients used their paretic arm. A polarized display and polarized glasses were used when the subjects were shown three-dimensional images. In the present study, jerk cost was used to quantify the smoothness of movement. [Results] Six of the 10 healthy subjects had significantly smoother reaching movements when viewing the three-dimensional images. The two cerebrovascular accident patients tended to have smoother movements in response to the three-dimensional images. [Conclusion] Analysis of the smoothness of movement was able to detect the influence of the depth cue in vision on movement quantitatively for the healthy subjects and cerebrovascular accident patients.
Collapse
Affiliation(s)
- Norio Kato
- Department of Physical Therapy, Faculty of Health Sciences,
Hokkaido University of Scienc,
Japan
- Graduate School of Information Science and Technology,
Hokkaido University, Japan
| | - Toshiaki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences,
Hokkaido University of Scienc,
Japan
- Graduate School of Information Science and Technology,
Hokkaido University, Japan
| | - Syunichi Sugihara
- Institute of Gerontology, The University of Tokyo,
Japan
- Sapporo Syuyukai Hospital, Japan
| | - Koichi Shimizu
- Institute of Gerontology, The University of Tokyo,
Japan
| | - Nobuki Kudo
- Institute of Gerontology, The University of Tokyo,
Japan
| |
Collapse
|
11
|
Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. BIOSYSTEMS & BIOROBOTICS 2016. [DOI: 10.1007/978-3-319-24901-8_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project. ROBOTICA 2014. [DOI: 10.1017/s0263574714002288] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYChanges in world-wide population trends have provided new demands for new technologies in areas such as care and rehabilitation. Recent developments in the the field of robotics for neurorehabilitation have shown a range of evidence regarding usefulness of these technologies as a tool to augment traditional physiotherapy. Part of the appeal for these technologies is the possibility to place a rehabilitative tool in one's home, providing a chance for more frequent and accessible technologies for empowering individuals to be in charge of their therapy.Objective:this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke.Methods:the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient benefits from a dedicated user interface that allows them to receive feedback on exercise as well as communicating with the health-care professional. The health-care professional is able to use a dedicated interface to send/receive communications and remote-manage patient's exercise routine using provided performance benchmarks. Patients were involved in a feasibility study (n=23) and were instructed to use the device and its interactive games for 180 min per week, around 30 min per day, for a period of 6 weeks, with a 2-months follow up. At the time of this study, only 12 of these patients have finished their 6 weeks trial plus 2 months follow up evaluation.Results:with the “use feasibility” as objective, our results indicate 2 patients dropping out due to technical difficulty or lack of personal interests to continue. Our frequency of use results indicate that on average, patients used the SCRIPT1 device around 14 min of self-administered therapy a day. The group average for the system usability scale was around 69% supporting system usability.Conclusions:based on the preliminary results, it is evident that stroke patients were able to use the system in their homes. An average of 14 min a day engagement mediated via three interactive games is promising, given the chronic stage of stroke. During the 2nd year of the project, 6 additional games with more functional relevance in their interaction have been designed to allow for a more variant context for interaction with the system, thus hoping to positively influence the exercise duration. The system usability was tested and provided supporting evidence for this parameter. Additional improvements to the system are planned based on formative feedback throughout the project and during the evaluations. These include a new orthosis that allows a more active control of the amount of assistance and resistance provided, thus aiming to provide a more challenging interaction.
Collapse
|
13
|
Novak D, Nagle A, Keller U, Riener R. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J Neuroeng Rehabil 2014; 11:64. [PMID: 24739255 PMCID: PMC4021830 DOI: 10.1186/1743-0003-11-64] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/07/2014] [Indexed: 11/16/2022] Open
Abstract
Background Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. Methods The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Results Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects’ personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Conclusions Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography.
Collapse
Affiliation(s)
- Domen Novak
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|