1
|
Bhat SG, Shin AY, Kaufman KR. Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review. J Neuroeng Rehabil 2023; 20:151. [PMID: 37940959 PMCID: PMC10634143 DOI: 10.1186/s12984-023-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries and central neurologic conditions can result in extensive disabilities. In cases with unilateral impairment, assessing the asymmetry between the upper extremity has been used to assess outcomes of treatment and severity of injury. A wide variety of validated and novel tests and sensors have been utilized to determine the upper extremity asymmetry. The purpose of this article is to review the literature and define the current state of the art for describing upper extremity asymmetry in patients with peripheral nerve injuries or central neurologic conditions. METHOD An electronic literature search of PubMed, Scopus, Web of Science, OVID was performed for publications between 2000 to 2022. Eligibility criteria were subjects with neurological conditions/injuries who were analyzed for dissimilarities in use between the upper extremities. Data related to study population, target condition/injury, types of tests performed, sensors used, real-world data collection, outcome measures of interest, and results of the study were extracted. Sackett's Level of Evidence was used to judge the quality of the articles. RESULTS Of the 7281 unique articles, 112 articles met the inclusion criteria for the review. Eight target conditions/injuries were identified (Brachial Plexus Injury, Cerebral Palsy, Multiple Sclerosis, Parkinson's Disease, Peripheral Nerve Injury, Spinal Cord Injury, Schizophrenia, and stroke). The tests performed were classified into thirteen categories based on the nature of the test and data collected. The general results related to upper extremity asymmetry were listed for all the reviewed articles. Stroke was the most studied condition, followed by cerebral palsy, with kinematics and strength measurement tests being the most frequently used tests. Studies with a level of evidence level II and III increased between 2000 and 2021. The use of real-world evidence-based data, and objective data collection tests also increased in the same period. CONCLUSION Adequately powered randomized controlled trials should be used to study upper extremity asymmetry. Neurological conditions other than stroke should be studied further. Upper extremity asymmetry should be measured using objective outcome measures like motion tracking and activity monitoring in the patient's daily living environment.
Collapse
Affiliation(s)
- Sandesh G Bhat
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenton R Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Motion Analysis Laboratory, Mayo Clinic, DAHLC 4-214A, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Shiba T, Mizuta N, Hasui N, Kominami Y, Nakatani T, Taguchi J, Morioka S. Effect of bihemispheric transcranial direct current stimulation on distal upper limb function and corticospinal tract excitability in a patient with subacute stroke: a case study. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1250579. [PMID: 37732289 PMCID: PMC10507690 DOI: 10.3389/fresc.2023.1250579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Introduction Activation of the unaffected hemisphere contributes to motor function recovery post stroke in patients with severe upper limb motor paralysis. Transcranial direct current stimulation (tDCS) has been used in stroke rehabilitation to increase the excitability of motor-related areas. tDCS has been reported to improve upper limb motor function; nonetheless, its effects on corticospinal tract excitability and muscle activity patterns during upper limb exercise remain unclear. Additionally, it is unclear whether simultaneously applied bihemispheric tDCS is more effective than anodal tDCS, which stimulates only one hemisphere. This study examined the effects of bihemispheric tDCS training on corticospinal tract excitability and muscle activity patterns during upper limb movements in a patient with subacute stroke. Methods In this single-case retrospective study, the Fugl-Meyer Assessment, Box and Block Test, electromyography, and intermuscular coherence measurement were performed. Intermuscular coherence was calculated at 15-30 Hz, which reflects corticospinal tract excitability. Results The results indicated that bihemispheric tDCS improved the Fugl-Meyer Assessment, Box and Block Test, co-contraction, and intermuscular coherence results, as compared with anodal tDCS. Discussion: These results reveal that upper limb training with bihemispheric tDCS improves corticospinal tract excitability and muscle activity patterns in patients with subacute stroke.
Collapse
Affiliation(s)
- Takahiro Shiba
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Naomichi Mizuta
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Aichi, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Naruhito Hasui
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Yohei Kominami
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
3
|
Muscle weakness assessment tool for automated therapy selection in elbow rehabilitation. ROBOTICA 2022. [DOI: 10.1017/s0263574722000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequisite to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data. These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance. Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the desired trajectory.
Collapse
|
4
|
Sheng W, Li S, Zhao J, Wang Y, Luo Z, Lo WLA, Ding M, Wang C, Li L. Upper Limbs Muscle Co-contraction Changes Correlated With the Impairment of the Corticospinal Tract in Stroke Survivors: Preliminary Evidence From Electromyography and Motor-Evoked Potential. Front Neurosci 2022; 16:886909. [PMID: 35720692 PMCID: PMC9198335 DOI: 10.3389/fnins.2022.886909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
Collapse
Affiliation(s)
- Wenfei Sheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
5
|
Chan HL, Hung JW, Chang KC, Wu CY. Myoelectric analysis of upper-extremity muscles during robot-assisted bilateral wrist flexion-extension in subjects with poststroke hemiplegia. Clin Biomech (Bristol, Avon) 2021; 87:105412. [PMID: 34167043 DOI: 10.1016/j.clinbiomech.2021.105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Muscle co-contraction during the execution of motor tasks or training is common in poststroke subjects. EMG-derived muscular activation indexes have been used to evaluate muscle co-contractions during movements. In addition, robot-assisted bilateral arm training provides a repetitive and stable training method to improve arm movements. However, quantitative measures of muscle contractions during this training in poststroke subjects have not been described. METHODS Seventeen subjects experiencing spastic hemiplegia after a stroke were recruited to perform robot-assisted bilateral wrist flexion and extension movements. The co-contraction index and two new indexes, temporal correlation and cross mutual information, which are derived from the EMGs of working muscles without the need for envelope normalization, are used to quantify intermuscular activation during wrist movements. FINDINGS Higher temporal correlation as well as higher co-contraction index was demonstrated in the affected muscles, implying the recruitment of muscle co-contractions to complete the movement task. On the other hand, a higher value of cross mutual information was exhibited in the unaffected muscles which was attributed to their distinct, rhythmic muscle contractions. The plot of temporal correlation versus cross mutual information further defined affected, unaffected synergistic, and unaffected agonist-antagonist muscular regions. Moreover, with the modified Ashworth scale, multiple regression models based on the co-contraction index and cross mutual information had the highest R-squared value of 0.733. INTERPRETATION EMG-derived intermuscular activation parameters demonstrated muscle co-contractions in the affected muscles and different types of intermuscular contractions during robot-assisted bilateral arm training. The modified Ashworth scale estimation based on multiple regression analysis of the activation indexes also demonstrated EMG-derived index a valuable method for assessing muscle spasticity in subjects with poststroke hemiplegia.
Collapse
Affiliation(s)
- Hsiao-Lung Chan
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jen-Wen Hung
- Department of Rehabilitation, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ku-Chou Chang
- Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Ferrari F, Shell CE, Thumser ZC, Clemente F, Plow EB, Cipriani C, Marasco PD. Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves Movement Quality in an Active Upper Limb Reach-and-Point Task. Front Neurorobot 2021; 15:610673. [PMID: 33732129 PMCID: PMC7956990 DOI: 10.3389/fnbot.2021.610673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke patients often have difficulty completing motor tasks even after substantive rehabilitation. Poor recovery of motor function can often be linked to stroke-induced damage to motor pathways. However, stroke damage in pathways that impact effective integration of sensory feedback with motor control may represent an unappreciated obstacle to smooth motor coordination. In this study we investigated the effects of augmenting movement proprioception during a reaching task in six stroke patients as a proof of concept. We used a wearable neurorobotic proprioceptive feedback system to induce illusory kinaesthetic sensation by vibrating participants' upper arm muscles over active limb movements. Participants were instructed to extend their elbow to reach-and-point to targets of differing sizes at various distances, while illusion-inducing vibration (90 Hz), sham vibration (25 Hz), or no vibration was applied to the distal tendons of either their biceps brachii or their triceps brachii. To assess the impact of augmented kinaesthetic feedback on motor function we compared the results of vibrating the biceps or triceps during arm extension in the affected arm of stroke patients and able-bodied participants. We quantified performance across conditions and participants by tracking limb/hand kinematics with motion capture, and through Fitts' law analysis of reaching target acquisition. Kinematic analyses revealed that injecting 90 Hz illusory kinaesthetic sensation into the actively contracting (agonist) triceps muscle during reaching increased movement smoothness, movement directness, and elbow extension. Conversely, injecting 90 Hz illusory kinaesthetic sensation into the antagonistic biceps during reaching negatively impacted those same parameters. The Fitts' law analyses reflected similar effects with a trend toward increased throughput with triceps vibration during reaching. Across all analyses, able-bodied participants were largely unresponsive to illusory vibrational augmentation. These findings provide evidence that vibration-induced movement illusions delivered to the primary agonist muscle involved in active movement may be integrated into rehabilitative approaches to help promote functional motor recovery in stroke patients.
Collapse
Affiliation(s)
- Francesca Ferrari
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Courtney E Shell
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Zachary C Thumser
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Francesco Clemente
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
7
|
Gámez AB, Hernandez Morante JJ, Martínez Gil JL, Esparza F, Martínez CM. The effect of surface electromyography biofeedback on the activity of extensor and dorsiflexor muscles in elderly adults: a randomized trial. Sci Rep 2019; 9:13153. [PMID: 31511629 PMCID: PMC6739340 DOI: 10.1038/s41598-019-49720-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
Surface electromyography-biofeedback (sEMG-B) is a technique employed for the rehabilitation of patients with neurological pathologies, such as stroke-derived hemiplegia; however, little is known about its effectiveness in the rehabilitation of the extension and flexion of several muscular groups in elderly patients after a stroke. Therefore, this research was focused on determining the effectiveness of sEMG-B in the muscles responsible for the extension of the hand and the dorsiflexion of the foot in post-stroke elderly subjects. Forty subjects with stroke-derived hemiplegia were randomly divided into intervention or control groups. The intervention consisted of 12 sEMG-B sessions. The control group underwent 12 weeks (24 sessions) of conventional physiotherapy. Muscle activity test and functionality (Barthel index) were determined. Attending to the results obtained, the intervention group showed a higher increase in the average EMG activity of the extensor muscle of the hand and in the dorsal flexion of the foot than the control group (p < 0.001 in both cases), which was associated with an increase in the patients' Barthel index score (p = 0.006); In addition, Fugl-Meyer test revealed higher effectiveness in the lower limb (p = 0.007). Thus, the sEMG-B seems to be more effective than conventional physiotherapy, and the use of this technology may be essential for improving muscular disorders in elderly patients with physical disabilities resulting from a stroke.
Collapse
Affiliation(s)
- Ana Belén Gámez
- Physiotherapy Service, "Sagrado Corazón" Hospital, Malaga, Spain
| | | | | | - Francisco Esparza
- International Chair of Cineanthropometry, Catholic University of Murcia, Murcia, Spain
| | | |
Collapse
|
8
|
Hesam-Shariati N, Trinh T, Thompson-Butel AG, Shiner CT, Redmond SJ, McNulty PA. Improved Kinematics and Motor Control in a Longitudinal Study of a Complex Therapy Movement in Chronic Stroke. IEEE Trans Neural Syst Rehabil Eng 2019; 27:682-691. [DOI: 10.1109/tnsre.2019.2895018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Hesam-Shariati N, Trinh T, Thompson-Butel AG, Shiner CT, McNulty PA. A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 1: Heterogeneous Changes Despite Consistent Improvements in Clinical Assessments. Front Neurol 2017; 8:340. [PMID: 28804474 PMCID: PMC5532386 DOI: 10.3389/fneur.2017.00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022] Open
Abstract
Poststroke weakness on the more-affected side may arise from reduced corticospinal drive, disuse muscle atrophy, spasticity, and abnormal coordination. This study investigated changes in muscle activation patterns to understand therapy-induced improvements in motor-function in chronic stroke compared to clinical assessments and to identify the effect of motor-function level on muscle activation changes. Electromyography (EMG) was recorded from five upper limb muscles on the more-affected side of 24 patients during early and late therapy sessions of an intensive 14-day program of Wii-based Movement Therapy (WMT) and for a subset of 13 patients at 6-month follow-up. Patients were classified according to residual voluntary motor capacity with low, moderate, or high motor-function levels. The area under the curve was calculated from EMG amplitude and movement duration. Clinical assessments of upper limb motor-function pre- and post-therapy included the Wolf Motor Function Test, Fugl-Meyer Assessment and Motor Activity Log Quality of Movement scale. Clinical assessments improved over time (p < 0.01) with an effect of motor-function level (p < 0.001). The pattern of EMG change by late therapy was complex and variable, with differences between patients with low compared to moderate or high motor-function levels. The area under the curve (p = 0.028) and peak amplitude (p = 0.043) during Wii-tennis backhand increased for patients with low motor-function, whereas EMG decreased for patients with moderate and high motor-function levels. The reductions included movement duration during Wii-golf (p = 0.048, moderate; p = 0.026, high) and Wii-tennis backhand (p = 0.046, moderate; p = 0.023, high) and forehand (p = 0.009, high) and the area under the curve during Wii-golf (p = 0.018, moderate) and Wii-baseball (p = 0.036, moderate). For the pooled data over time, there was an effect of motor-function (p = 0.016) and an interaction between time and motor-function (p = 0.009) for Wii-golf movement duration. Wii-baseball movement duration decreased as a function of time (p = 0.022). There was an effect on Wii-tennis forehand duration for time (p = 0.002), an interaction of time and motor-function (p = 0.005) and an effect of motor-function level on the area under the curve (p = 0.034) for Wii-golf. This study demonstrated different patterns of EMG changes according to residual voluntary motor-function levels, despite heterogeneity within each level that was not evident following clinical assessments alone. Thus, rehabilitation efficacy might be underestimated by analyses of pooled data.
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Terry Trinh
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Angelica G. Thompson-Butel
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Christine T. Shiner
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Penelope A. McNulty
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Quantitative assessment test for upper-limb motor function by using EMG and kinematic analysis in the practice of occupational therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1158-1161. [PMID: 29060080 DOI: 10.1109/embc.2017.8037035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper proposes a quantitative assessment test of stroke patients' upper limb motor functions during occupational therapy. Conventional assessments are performed based on therapists' observations and subjective judgments which make it hard to recognize the qualitative functional changes. To suggest quantitative function indices, we measured electromyogram and kinematic parameters from 6 stroke patients during the `stacking cones' task and the `ROM arc' task using motion sensors and EMG sensor attached on the brachial, and analyzed motor functions. The selected indices that represent the motor function were the mean of angular velocity, the number of extrema, and the difference between tension of flexor (FCU, FCR and Brachioradialis m.) and extensor ECU, ECR and EDM). We compared the indices of affected and less affected upper limbs of each subject and it showed statistical significance during the given tasks (p<;0.05). Therefore, the quantitative assessment is expected to integrate the process of treatment and evaluation.
Collapse
|
11
|
Tamburella F, Moreno JC, Iosa M, Pisotta I, Cincotti F, Mattia D, Pons JL, Molinari M. Boosting the traditional physiotherapist approach for stroke spasticity using a sensorized ankle foot orthosis: a pilot study. Top Stroke Rehabil 2017; 24:447-456. [PMID: 28460597 DOI: 10.1080/10749357.2017.1318340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spasticity is a motor disorder that is commonly treated manually by a physical therapist (PhT) stretching the muscles. Recent data on learning have demonstrated the importance of human-to-human interaction in improving rehabilitation: cooperative motor behavior engages specific areas of the motor system compared with execution of a task alone. OBJECTIVES We hypothesize that PhT-guided therapy that involves active collaboration with the patient (Pt) through shared biomechanical visual biofeedback (vBFB) positively impacts learning and performance by the Pt during ankle spasticity treatment. A sensorized ankle foot orthosis (AFO) was developed to provide online quantitative data of joint range of motion (ROM), angular velocity, and electromyographic activity to the PhT and Pt during the treatment of ankle spasticity. METHODS Randomized controlled clinical trial. Ten subacute stroke inpatients, randomized into experimental (EXP) and control (CTRL) groups, underwent six weeks of daily treatment. The EXP group was treated with an active AFO, and the CTRL group was given an inactive AFO. Spasticity, ankle ROM, ankle active and passive joint speed, and coactivation index (CI) were assessed at enrollment and after 15-30 sessions. RESULTS Spasticity and CI (p < 0.005) decreased significantly after training only in the EXP group, in association with a significant rise in active joint speed and active ROM (p < 0.05). Improvements in spasticity (p < 0.05), active joint speed (p < 0.001), and CI (p < 0.001) after treatment differed between the EXP and CTRL groups. CONCLUSIONS PhT-Pt sharing of exercise information, provided by joint sensorization and vBFB, improved the efficacy of the conventional approach for treating ankle spasticity in subacute stroke Pts.
Collapse
Affiliation(s)
- Federica Tamburella
- a SPInal REhabilitation Lab and Laboratory (SPIRE Lab.), Neurorehabilitation1 - Spinal Center , IRCCS S. Lucia Foundation , Rome , Italy.,b Laboratory of Robotics Applied to Neurological Rehabilitation, (NeuroRobot Lab.), Neurorehabilitation1 - Spinal Center , IRCCS S. Lucia Foundation , Rome , Italy
| | - Juan C Moreno
- c Spanish National Research Council, Cajal Institute, Neural Rehabilitation Group , Madrid , Spain
| | - Marco Iosa
- d Clinical Laboratory of Experimental Neurorehabilitation , IRCCS S. Lucia Foundation , Rome , Italy
| | - Iolanda Pisotta
- b Laboratory of Robotics Applied to Neurological Rehabilitation, (NeuroRobot Lab.), Neurorehabilitation1 - Spinal Center , IRCCS S. Lucia Foundation , Rome , Italy
| | - Febo Cincotti
- e Department of Computer, Control and Management Engineering , Sapienza University of Rome , Rome , Italy.,f Neuroelectrical Imaging and BCI Lab , IRCCS S. Lucia Foundation , Rome , Italy
| | - Donatella Mattia
- f Neuroelectrical Imaging and BCI Lab , IRCCS S. Lucia Foundation , Rome , Italy
| | - José L Pons
- c Spanish National Research Council, Cajal Institute, Neural Rehabilitation Group , Madrid , Spain
| | - Marco Molinari
- b Laboratory of Robotics Applied to Neurological Rehabilitation, (NeuroRobot Lab.), Neurorehabilitation1 - Spinal Center , IRCCS S. Lucia Foundation , Rome , Italy
| |
Collapse
|
12
|
Ao D, Song R, Tong KY. Sensorimotor control of tracking movements at various speeds for stroke patients as well as age-matched and young healthy subjects. PLoS One 2015; 10:e0128328. [PMID: 26030289 PMCID: PMC4452214 DOI: 10.1371/journal.pone.0128328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
There are aging- and stroke-induced changes on sensorimotor control in daily activities, but their mechanisms have not been well investigated. This study explored speed-, aging-, and stroke-induced changes on sensorimotor control. Eleven stroke patients (affected sides and unaffected sides) and 20 control subjects (10 young and 10 age-matched individuals) were enrolled to perform elbow tracking tasks using sinusoidal trajectories, which included 6 target speeds (15.7, 31.4, 47.1, 62.8, 78.5, and 94.2 deg/s). The actual elbow angle was recorded and displayed on a screen as visual feedback, and three indicators, the root mean square error (RMSE), normalized integrated jerk (NIJ) and integral of the power spectrum density of normalized speed (IPNS), were used to investigate the strategy of sensorimotor control. Both NIJ and IPNS had significant differences among the four groups (P<0.01), and the values were ranked in the following order: young controls < age-matched controls
Collapse
Affiliation(s)
- Di Ao
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Rong Song
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Kai-yu Tong
- Division of Biomedical Engineering, Department of Electronic Engineering, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|