1
|
Forbrigger S, DePaul VG, Davies TC, Morin E, Hashtrudi-Zaad K. Home-based upper limb stroke rehabilitation mechatronics: challenges and opportunities. Biomed Eng Online 2023; 22:67. [PMID: 37424017 DOI: 10.1186/s12938-023-01133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Interest in home-based stroke rehabilitation mechatronics, which includes both robots and sensor mechanisms, has increased over the past 12 years. The COVID-19 pandemic has exacerbated the existing lack of access to rehabilitation for stroke survivors post-discharge. Home-based stroke rehabilitation devices could improve access to rehabilitation for stroke survivors, but the home environment presents unique challenges compared to clinics. The present study undertakes a scoping review of designs for at-home upper limb stroke rehabilitation mechatronic devices to identify important design principles and areas for improvement. Online databases were used to identify papers published 2010-2021 describing novel rehabilitation device designs, from which 59 publications were selected describing 38 unique designs. The devices were categorized and listed according to their target anatomy, possible therapy tasks, structure, and features. Twenty-two devices targeted proximal (shoulder and elbow) anatomy, 13 targeted distal (wrist and hand) anatomy, and three targeted the whole arm and hand. Devices with a greater number of actuators in the design were more expensive, with a small number of devices using a mix of actuated and unactuated degrees of freedom to target more complex anatomy while reducing the cost. Twenty-six of the device designs did not specify their target users' function or impairment, nor did they specify a target therapy activity, task, or exercise. Twenty-three of the devices were capable of reaching tasks, 6 of which included grasping capabilities. Compliant structures were the most common approach of including safety features in the design. Only three devices were designed to detect compensation, or undesirable posture, during therapy activities. Six of the 38 device designs mention consulting stakeholders during the design process, only two of which consulted patients specifically. Without stakeholder involvement, these designs risk being disconnected from user needs and rehabilitation best practices. Devices that combine actuated and unactuated degrees of freedom allow a greater variety and complexity of tasks while not significantly increasing their cost. Future home-based upper limb stroke rehabilitation mechatronic designs should provide information on patient posture during task execution, design with specific patient capabilities and needs in mind, and clearly link the features of the design to users' needs.
Collapse
Affiliation(s)
- Shane Forbrigger
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Canada
| | - Vincent G DePaul
- School of Rehabilitation Therapy, Queen's University, Kingston, Canada
| | - T Claire Davies
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Canada
| | - Evelyn Morin
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Canada
| | - Keyvan Hashtrudi-Zaad
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Canada.
| |
Collapse
|
2
|
Comellas M, Chan V, Zondervan DK, Reinkensmeyer DJ. A Dynamic Wheelchair Armrest for Promoting Arm Exercise and Mobility After Stroke. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1829-1839. [PMID: 35776829 PMCID: PMC9354471 DOI: 10.1109/tnsre.2022.3187755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arm movement recovery after stroke can improve with sufficient exercise. However, rehabilitation therapy sessions are typically not enough. To address the need for effective methods of increasing arm exercise outside therapy sessions we developed a novel armrest, called Boost. It easily attaches to a standard manual wheelchair just like a conventional armrest and enables users to exercise their arm in a linear forward-back motion. This paper provides a detailed design description of Boost, the biomechanical analysis method to evaluate the joint torques required to operate it, and the results of pilot testing with five stroke patients. Biomechanics results show the required shoulder flexion and elbow extension torques range from −25% to +36% of the torques required to propel a standard pushrim wheelchair, depending on the direction of applied force. In pilot testing, all five participants were able to exercise the arm with Boost in stationary mode (with lower physical demand). Three achieved overground ambulation (with higher physical demand) exceeding 2 m/s after 2–5 practice trials; two of these could not propel their wheelchair with the pushrim. This simple to use, dynamic armrest provides people with hemiparesis a way to access repetitive arm exercise outside of therapy sessions, independently right in their wheelchair. Significantly, Boost removes the requirements to reach, grip, and release the pushrim to propel a wheelchair, an action many individuals with stroke cannot complete.
Collapse
|
3
|
Smith BW, Lobo-Prat J, Zondervan DK, Lew C, Chan V, Chou C, Toledo S, Reinkensmeyer DJ, Shaw S, Cramer SC. Using a bimanual lever-driven wheelchair for arm movement practice early after stroke: A pilot, randomized, controlled, single-blind trial. Clin Rehabil 2021; 35:1577-1589. [PMID: 34027703 DOI: 10.1177/02692155211014362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Many patients with subacute stroke rely on the nonparetic arm and leg to propel manual wheelchairs. We designed a bimanual, lever-driven wheelchair (LARA) to promote overground mobility and hemiparetic arm exercise. This study measured the feasibility of using LARA to increase arm movement, achieve mobility, and improve arm motor recovery (clinicaltrials.gov/ct2/show/NCT02830893). DESIGN Randomized, assessor-blind, controlled trial. SETTING Two inpatient rehabilitation facilities. SUBJECTS Nineteen patients with subacute stroke (1 week to 2 months post-stroke) received 30 minutes extra arm movement practice daily, while admitted to inpatient rehabilitation (n = 10) or before enrollment in outpatient therapy (n = 9). INTERVENTIONS Patients were randomized to train with the LARA wheelchair (n = 11) or conventional exercises with a rehabilitation therapist (n = 8). MAIN MEASURES Number of arm movements per training session; overground speed; Upper Extremity Fugl-Meyer score at three-month follow-up. RESULTS Participants who trained with LARA completed 254 (median) arm movements with the paretic arm each session. For three participants, LARA enabled wheelchair mobility at practical indoor speeds (0.15-0.30 m/s). Fugl-Meyer score increased 19 ± 13 points for patients who trained with LARA compared to 14 ± 7 points with conventional exercises (P = 0.32). Secondary measures including shoulder pain and increased tone did not differ between groups. Mixed model analysis found significant interaction between LARA training and treatment duration (P = 0.037), informing power analysis for future investigation. CONCLUSIONS Practising arm movement with a lever-driven wheelchair is a feasible method for increasing arm movement early after stroke. It enabled wheelchair mobility for a subset of patients and shows potential for improving arm motor recovery.
Collapse
Affiliation(s)
- Brendan W Smith
- Department of Mechanical Engineering, Loyola Marymount University, Los Angeles, CA, USA
| | - Joan Lobo-Prat
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain.,Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA, USA
| | | | - Christopher Lew
- Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA, USA
| | - Vicky Chan
- Rehabilitation Services, UC Irvine Medical Center, Irvine, CA, USA
| | - Cathy Chou
- Rehabilitation Services, UC Irvine Medical Center, Irvine, CA, USA
| | - Spencer Toledo
- Rehabilitation Services, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - David J Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA, USA.,Departments of Anatomy and Neurobiology, Biomedical Engineering, and Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Susan Shaw
- Rehabilitation Services, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, CA, USA.,California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
4
|
Phan TQ, Nguyen H, Mulyk A, Vermillion BC, Lee SW. Development of Self-Adaptable Mechanism to Compensate Angle-Dependent Flexor Tone of the Elbow Joint Post-stroke: A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4779-4782. [PMID: 33019059 DOI: 10.1109/embc44109.2020.9176501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Upper extremity impairments are common among stroke survivors. Robotic devices enable a high-dose of repetitive training for patients, but most systems are confined to the laboratory settings due to their complexity and power requirements. Previously we developed a passive elbow device that can counteract the angle-dependent tone of flexor muscles with hypertonia, but its efficacy was found limited as the increase in passive assistance during elbow extension was found not sufficient to provide assistance to those with more severe impairments. Therefore, in this study, we developed a 'self-adaptable' passive device that adjusts its assistance level based on the movements of patients. In addition to the morphological design to adjust moment arms of the elastic components, we incorporated a self-adaptation mechanism, in which the lengths of the elastic bands were adjusted by a pair of miniature linear motors based on the joint position feedback signals. The capacity of the device was then tested in a pilot testing with two healthy subjects, for whom angle-dependent flexion torque was implemented to simulate flexor hypertonia. The additional adjustment of passive component lengths was found to further increase the elbow extension assistance as the elbow joint extended. The proposed self-adapting mechanism, which does not require any complex control input from the experimenters, can be incorporated with the existing passive device to improve its functional efficacy in home-based training.
Collapse
|
5
|
Marszałek J, Kosmol A, Mróz A, Wiszomirska I, Fiok K, Molik B. Physiological parameters depending on two different types of manual wheelchair propulsion. Assist Technol 2020; 32:229-235. [PMID: 30332556 DOI: 10.1080/10400435.2018.1529005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare aerobic parameters in the multistage field test (MFT) in hand rim wheelchair propulsion and lever wheelchair propulsion. METHODS Twenty-one men performed MFT using two different types of propulsion, i.e., lever and hand rim wheelchair propulsion. The covered distance and physiological variables (oxygen uptake (VO2), minute ventilation (VE), carbon dioxide output (VCO2), respiratory coefficient (RQ), and heart rate (HR)) were observed. Physiological variables were measured with Cosmed K5 system. Kolmogorov-Smirnov test, t-test, Wilcoxon test and effect sizes (ESs) were used to assess differences. Statistical significance was set at p < .05. RESULTS A significantly longer distance was observed in lever wheelchair propulsion than in hand rim wheelchair propulsion (1,194 and 649 m, respectively). VO2max and RQ were higher in hand rim wheelchair propulsion. All physiological variables for the last (fifth) level of the test in hand rim propulsion were significantly higher than in lever wheelchair propulsion. ES was large for each observed difference. CONCLUSION The lever wheelchair propulsion movement is less demanding than hand rim wheelchair propulsion and longer distances can be achieved by the user. There is a need to check lever wheelchair propulsion in different types of field tests.
Collapse
Affiliation(s)
- Jolanta Marszałek
- Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw , Poland
| | - Andrzej Kosmol
- Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw , Poland
| | - Anna Mróz
- Physical Education, Jozef Pilsudski University of Physical Education in Warsaw , Poland
| | - Ida Wiszomirska
- Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw , Poland
| | | | - Bartosz Molik
- Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw , Poland
| |
Collapse
|
6
|
Phan TQ, Nguyen H, Vermillion B, Lee SW. Passive Elbow Movement Assistant (PEMA): A portable exoskeleton to compensate angle-dependent tone profile of the elbow joint post-stroke. IEEE Int Conf Rehabil Robot 2019; 2019:1209-1214. [PMID: 31374794 DOI: 10.1109/icorr.2019.8779365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Significant impairments in upper extremity function are commonly observed after neurological injuries such as stroke. While the efficacy of robotic training has been demonstrated, the use of these devices is confined to the laboratory setting due to its complexity and power requirements. In this study, we developed a passive, portable device (Portable Elbow Movement Assistant; PEMA) that can provide assistance during elbow movements of stroke survivors. The geometric properties of the device were designed to allow morphological changes in the elastic components during movements, so that the assistance produced by the elastic component counteract the angle-dependent flexor hypertonia commonly observed in stroke survivors. A mathematical model for the proposed design was first developed to characterize the assistance provided by the device. The capacity of the device was then tested in a pilot testing with four healthy subjects, for whom a custom device to simulate elbow flexor hypertonia (providing an increased resistance for the extended posture) was implemented. The proposed device was found to effectively counteract the angle-dependent flexion moment, produced by the hypertonia simulator, as a significant decrease was observed in the slope of the angle-activation relationship (movement phase) and activation level (hold phase) of the triceps brachii muscle. The assistance did not affect the activation of the antagonist muscle (biceps brachii), indicating an independent modulation of the agonist and antagonist muscles resulted from the assistance.
Collapse
|
7
|
Smith BW, Bueno DR, Zondervan DK, Montano L, Reinkensmeyer DJ. Bimanual wheelchair propulsion by people with severe hemiparesis after stroke. Disabil Rehabil Assist Technol 2019; 16:49-62. [DOI: 10.1080/17483107.2019.1630018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Brendan W. Smith
- Department of Mechanical Engineering, Loyola Marymount University, Los Angeles, CA, USA
| | | | | | - Luis Montano
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - David J. Reinkensmeyer
- Departments of Anatomy and Neurobiology, Mechanical and Aerospace Engineering, Biomedical Engineering, and Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
A Muscle-Specific Rehabilitation Training Method Based on Muscle Activation and the Optimal Load Orientation Concept. Appl Bionics Biomech 2018; 2018:2365983. [PMID: 30595714 PMCID: PMC6282125 DOI: 10.1155/2018/2365983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 12/04/2022] Open
Abstract
Training based on muscle-oriented repetitive movements has been shown to be beneficial for the improvement of movement abilities in human limbs in relation to fitness, athletic training, and rehabilitation training. In this paper, a muscle-specific rehabilitation training method based on the optimal load orientation concept (OLOC) was proposed for patients whose motor neurons are injured, but whose muscles and tendons are intact, to implement high-efficiency resistance training for the shoulder muscles, which is one of the most complex joints in the human body. A three-dimensional musculoskeletal model of the human shoulder was used to predict muscle forces experienced during shoulder movements, in which muscles that contributed to shoulder motion were divided into 31 muscle bundles, and the Hill model was used to characterize the force-length properties of the muscle. According to the musculoskeletal model, muscle activation was calculated to represent the muscle force. Thus, training based on OLOC was proposed by maximizing the activation of a specific muscle under each posture of the training process. The analysis indicated that the muscle-specific rehabilitation training method based on the OLOC significantly improved the training efficiency for specific muscles. The method could also be used for trajectory planning, load magnitude planning, and evaluation of training effects.
Collapse
|
9
|
Rhythmic robotic training enhances motor skills of both rhythmic and discrete upper-limb movements after stroke: a longitudinal pilot study. Int J Rehabil Res 2018; 42:46-55. [PMID: 30371552 DOI: 10.1097/mrr.0000000000000325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Discrete and rhythmic movements are two fundamental motor primitives being, at least partially, controlled by separate neural circuitries. After a stroke, both primitives may be impaired in the upper limb. Currently, intensive functional movement therapy is recommended after stroke, but it is mainly composed of discrete movements. No recommendation is made for the specific training of rhythmic movements. However, if they form two different primitives, both should receive a specific training to recover the complete motor repertoire, as many daily live movements integrate both of them. This paper reports the effects of a pure unilateral rhythmic movement therapy on motor performance, after stroke. Thirteen patients with chronic stroke participated in this longitudinal pilot study. They were assessed twice before the therapy to validate their chronic state, and twice after the last session to establish the short-term and long-term effects of the therapy. The therapy itself was composed of 12 sessions spread over 1 month. The exercises consisted in performing straight or circular rhythmic movements, while receiving assistance as need through a robotic device. Short-term and long-term improvements were observed in rhythmic movements regarding smoothness, velocity, and harmonicity. More surprisingly, some transfer occurred to the untrained discrete movements. This finding disputes previous studies that reported no transfer from rhythmic to discrete movements with healthy participants.
Collapse
|
10
|
A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics. Appl Bionics Biomech 2018; 2018:2719631. [PMID: 29967652 PMCID: PMC6008631 DOI: 10.1155/2018/2719631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics.
Collapse
|
11
|
Liu LY, Li Y, Lamontagne A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. J Neuroeng Rehabil 2018; 15:65. [PMID: 29973250 PMCID: PMC6033222 DOI: 10.1186/s12984-018-0408-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Despite upper extremity function playing a crucial role in maintaining one's independence in activities of daily living, upper extremity impairments remain one of the most prevalent post-stroke deficits. To enhance the upper extremity motor recovery and performance among stroke survivors, two training paradigms in the fields of robotics therapy involving modifying haptic feedback were proposed: the error-augmentation (EA) and error-reduction (ER) paradigms. There is a lack of consensus, however, as to which of the two paradigms yields superior training effects. This systematic review aimed to determine (i) whether EA is more effective than conventional repetitive practice; (ii) whether ER is more effective than conventional repetitive practice and; (iii) whether EA is more effective than ER in improving post-stroke upper extremity motor recovery and performance. The study search and selection process as well as the ratings of methodological quality of the articles were conducted by two authors separately, and the results were then compared and discussed among the two reviewers. Findings were analyzed and synthesized using the level of evidence. By August 1st 2017, 269 articles were found after searching 6 databases, and 13 were selected based on criteria such as sample size, type of participants recruited, type of interventions used, etc. Results suggest, with a moderate level of evidence, that EA is overall more effective than conventional repetitive practice (motor recovery and performance) and ER (motor performance only), while ER appears to be no more effective than conventional repetitive practice. However, intervention effects as measured using clinical outcomes were under most instance not 'clinically meaningful' and effect sizes were modest. While stronger evidence is required to further support the efficacy of error modification therapies, the influence of factors related to the delivery of the intervention (such as intensity, duration) and personal factors (such as stroke severity and time of stroke onset) deserves further investigations as well.
Collapse
Affiliation(s)
- Le Yu Liu
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada. .,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada.
| | - Youlin Li
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada.,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y5, Canada.,Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital site of CRIR (CISSS Laval), Laval, Canada
| |
Collapse
|
12
|
Sarigul-Klijn Y, Lobo-Prat J, Smith BW, Thayer S, Zondervan D, Chan V, Stoller O, Reinkensmeyer DJ. There is plenty of room for motor learning at the bottom of the Fugl-Meyer: Acquisition of a novel bimanual wheelchair skill after chronic stroke using an unmasking technology. IEEE Int Conf Rehabil Robot 2017; 2017:50-55. [PMID: 28813792 DOI: 10.1109/icorr.2017.8009220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many people with a stroke have a severely paretic arm, and it is often assumed that they are unable to learn novel, skilled behaviors that incorporate use of that arm. Here, we show that a group of people with chronic stroke (n = 5, upper extremity Fugl-Meyer scores: 31, 30, 26, 22, 8) learned to use their impaired arm to propel a novel, yoked-clutch lever drive wheelchair. Over six daily training sessions, each involving about 134 training movements with their "useless" arm, the users gradually achieved a 3-fold increase in wheelchair speed on average, with a 4-6 fold increase for three of the participants. They did this by learning a bimanual skill: pushing the levers with both arms while activating the yoked-clutches at the right time with their ipsilesional (i.e. "good") hand to propel the wheelchair forward. They perceived the task as highly motivating and useful. The speed improvements exceeded a 1.5-factor improvement observed when young, unimpaired users learned to propel the chair. The learning rate also exceeded a sample of learning rates from a variety of classic learning studies. These results suggest that appropriately-designed assistive technologies (or "unmasking technologies - UTs") can unleash a powerful, latent ability for motor learning even for severely paretic arms. While UTs may not reduce clinical impairment, they may facilitate large improvements in a specific functional ability.
Collapse
|
13
|
Sarigul-Klijn Y, Smith BW, Reinkensmeyer DJ. Design and experimental evaluation of yoked hand-clutching for a lever drive chair. Assist Technol 2017; 30:281-288. [DOI: 10.1080/10400435.2017.1326413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Yasemin Sarigul-Klijn
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Brendan W. Smith
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
| | - David J. Reinkensmeyer
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| |
Collapse
|
14
|
Rhythmic arm movements are less affected than discrete ones after a stroke. Exp Brain Res 2016; 234:1403-17. [DOI: 10.1007/s00221-015-4543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
15
|
Smith BW, Zondervan DK, Lord TJ, Chan V, Reinkensmeyer DJ. Feasibility of a bimanual, lever-driven wheelchair for people with severe arm impairment after stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5292-5. [PMID: 25571188 DOI: 10.1109/embc.2014.6944820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals with severe arm impairment after stroke are thought to be unable to use a manual wheelchair in the conventional bimanual fashion, because they cannot grip and push the pushrim with their impaired hand. Instead, they are often taught to propel a wheelchair with their good arm and leg, a compensatory strategy that encourages disuse and may cause asymmetric tone. Here, we show that four stroke survivors (9, 27 50 and 16 months post stroke) with severe arm impairment (upper extremity Fugl Meyer scores of 21, 17, 16 and 15 of 66 respectively) were able to propel themselves overground during ten, 3.3 meter movement trials, using a specially designed lever-driven wheelchair adapted with a splint and elastic bands. Their average speed on the tenth trial was about 0.1 m/sec. These results suggest that individuals with stroke could use bimanual wheelchair propulsion for mobility, both avoiding the problems associated with good-arm/good-leg propulsion and increasing the number of daily arm movements they achieve, which may improve arm movement recovery.
Collapse
|
16
|
Zondervan DK, Augsburger R, Bodenhoefer B, Friedman N, Reinkensmeyer DJ, Cramer SC. Machine-Based, Self-guided Home Therapy for Individuals With Severe Arm Impairment After Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair 2014; 29:395-406. [PMID: 25273359 DOI: 10.1177/1545968314550368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Few therapeutic options exist for the millions of persons living with severe arm impairment after stroke to increase their dose of arm rehabilitation. This study compared self-guided, high-repetition home therapy with a mechanical device (the resonating arm exerciser [RAE]) to conventional therapy in patients with chronic stroke and explored RAE use for patients with subacute stroke. METHODS A total of 16 participants with severe upper-extremity impairment (mean Fugl-Meyer [FM] score = 21.4 ± 8.8 out of 66) >6 months poststroke were randomized to 3 weeks of exercise with the RAE or conventional exercises. The primary outcome measure was FM score 1 month posttherapy. Secondary outcome measures included Motor Activity Log, Visual Analog Pain Scale, and Ashworth Spasticity Scale. After a 1-month break, individuals in the conventional group also received a 3-week course of RAE therapy. RESULTS The change in FM score was significant in both the RAE and conventional groups after training (2.6 ± 1.4 and 3.4 ± 2.4, P = .008 and .016, respectively). These improvements were not significant at 1 month. Exercise with the RAE led to significantly greater improvements in distal FM score than conventional therapy at the 1-month follow-up (P = .02). In a separate cohort of patients with subacute stroke, the RAE was found feasible for exercise. DISCUSSION In those with severe arm impairment after chronic stroke, home-based training with the RAE was feasible and significantly reduced impairment without increasing pain or spasticity. Gains with the RAE were comparable to those found with conventional training and also included distal arm improvement.
Collapse
|
17
|
Time flies when you are in a groove: using entrainment to mechanical resonance to teach a desired movement distorts the perception of the movement’s timing. Exp Brain Res 2014; 232:1057-70. [DOI: 10.1007/s00221-013-3819-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022]
|
18
|
Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil 2013; 10:112. [PMID: 24354476 PMCID: PMC3878268 DOI: 10.1186/1743-0003-10-112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton ("BONES") that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. METHODS Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. RESULTS Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p < 0.05); these improvements were sustained at the 3 month follow-up. When comparing the effect of type of training on the gains obtained, no significant difference was noted between multijoint functional and single joint robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. CONCLUSIONS Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only useful for impairment reduction. The pilot results presented here also suggest that multijoint functional robotic training is not decisively superior to single joint robotic training. This challenges the idea that functionally-oriented games during training is a key element for improving behavioral outcomes. TRIAL REGISTRATION NCT01050231.
Collapse
Affiliation(s)
- Marie-Hélène Milot
- Université de Sherbrooke, Faculté de médecine et des sciences de la santé, École de réadaptation, Centre de recherche sur le vieillissement, 1036 Belvédère sud, Sherbrooke (Québec) J1H 4C4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zondervan DK, Smith B, Reinkensmeyer DJ. Lever-actuated resonance assistance (LARA): a wheelchair-based method for upper extremity therapy and overground ambulation for people with severe arm impairment. IEEE Int Conf Rehabil Robot 2013; 2013:6650400. [PMID: 24187219 DOI: 10.1109/icorr.2013.6650400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
People with severe arm impairment have limited technologies available for retraining their arms, and, if they also have difficulty walking, they often cannot effectively use a manual wheelchair because they cannot grasp and push the pushrim. We are using Lever-Actuated Resonance Assistance (LARA) to solve these problems. A LARA-based device can attach to a manual wheelchair and allow it to be used by people with severe arm weakness in a stationary exercise mode, or for self-powered overground ambulation. LARA uses a lever drive and arm support to appropriately position the arm and to reduce the dexterity required to operate the wheelchair. It also uses mechanical resonance implemented with elastic bands to provide assistance for both stationary exercise and overground ambulation. We first review here pilot results in which we used the LARA method to provide arm therapy to individuals with chronic stroke in stationary exercise mode. We then describe a novel motion-based user interface that allows individuals to control a video game with LARA while operating a wheelchair in resonance. Finally, for overground ambulation mode, we show in simulation that the mechanical resonance provided by LARA theoretically allows people with severe arm weakness to propel themselves with reduced effort and obtain speeds previously unattainable.
Collapse
|