1
|
Roberts JW, Burkitt JJ, Elliott D. The type 1 submovement conundrum: an investigation into the function of velocity zero-crossings within two-component aiming movements. Exp Brain Res 2024:10.1007/s00221-024-06784-0. [PMID: 38329516 DOI: 10.1007/s00221-024-06784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
In rapid manual aiming, traditional wisdom would have it that two components manifest from feedback-based processes, where error accumulated within the primary submovement can be corrected within the secondary submovement courtesy of online sensory feedback. In some aiming contexts, there are more type 1 submovements (overshooting) compared to types 2 and 3 submovements (undershooting), particularly for more rapid movements. These particular submovements have also been attributed to a mechanical artefact involving movement termination and stabilisation. Hence, the goal of our study was to more closely examine the function of type 1 submovements by revisiting some of our previous datasets. We categorised these submovements according to whether the secondary submovement moved the limb closer (functional), or not (non-functional), to the target. Overall, there were both functional and non-functional submovements with a significantly higher proportion for the former. The displacement at the primary and secondary submovements, and negative velocity peak were significantly greater in the functional compared to non-functional. The influence of submovement type on other movement characteristics, including movement time, was somewhat less clear. These findings indicate that the majority of type 1 submovements are related to intended feedforward- and/or feedback-based processes, although there are a portion that can be attributed an indirect manifestation of a mechanical artefact. As a result, we suggest that submovements should be further categorised by their error-reducing function.
Collapse
Affiliation(s)
- James W Roberts
- Brain and Behaviour Research Group, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK.
- School of Health Sciences, Psychology, Action and Learning of Movement (PALM) Laboratory, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK.
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - James J Burkitt
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Digby Elliott
- Brain and Behaviour Research Group, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
2
|
Roberts JW, Bennett SJ. Online control of rapid target-directed aiming using blurred visual feedback. Hum Mov Sci 2021; 81:102917. [PMID: 34954624 DOI: 10.1016/j.humov.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
The accuracy and precision of target-directed aiming is contingent upon the availability of online visual feedback. The present study aimed to examine the visual regulation of aiming with blurred vision. The aiming task was executed using a stylus on a graphics digitizing board, which was translated onto a screen in the form of a cursor (representing the moving limb) and target. The vision conditions involved the complete disappearance or blur of the cursor alone, target alone, and cursor+target. These conditions involved leaving the screen uncovered or covering with a diffusing sheet to induce blur. The distance between the screen and sheet was increased to make the blur progressively more severe (0 cm, 3 cm). Results showed significantly less radial and variable error under blurred compared to no vision of the cursor and cursor+target. These findings were corroborated by the movement kinematics including a shorter proportion of time to peak velocity, more negative within-participant correlation between the distances travelled to and after peak velocity, and lower spatial variability from peak velocity to the end of the movement under blurred vision. The superior accuracy and precision under the blurred compared to no vision conditions is consistent with functioning visual regulation of aiming, which is primarily contingent upon the online visual feedback of the moving limb. This outcome may be attributed to the processing of low spatial-high temporal frequencies. Potential implications for low vision diagnostics are discussed.
Collapse
Affiliation(s)
- James W Roberts
- Liverpool Hope University, Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool L16 9JD, UK.
| | - Simon J Bennett
- Liverpool John Moores University, Research Institute of Sport & Exercise Sciences, Brain & Behaviour Research Group, Liverpool L3 5AF, UK
| |
Collapse
|
3
|
Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Hansen S, Grierson LEM, Foster NC, Roberts JW, Bennett SJ. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations. Exp Brain Res 2020; 238:2685-2699. [PMID: 33079207 DOI: 10.1007/s00221-020-05952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Several years ago, our research group forwarded a model of goal-directed reaching and aiming that describes the processes involved in the optimization of speed, accuracy, and energy expenditure Elliott et al. (Psychol Bull 136:1023-1044, 2010). One of the main features of the model is the distinction between early impulse control, which is based on a comparison of expected to perceived sensory consequences, and late limb-target control that involves a spatial comparison of limb and target position. Our model also emphasizes the importance of strategic behaviors that limit the opportunity for worst-case or inefficient outcomes. In the 2010 paper, we included a section on how our model can be used to understand atypical aiming/reaching movements in a number of special populations. In light of a recent empirical and theoretical update of our model Elliott et al. (Neurosci Biobehav Rev 72:95-110, 2017), here we consider contemporary motor control work involving typical aging, Down syndrome, autism spectrum disorder, and tetraplegia with tendon-transfer surgery. We outline how atypical limb control can be viewed within the context of the multiple-process model of goal-directed reaching and aiming, and discuss the underlying perceptual-motor impairment that results in the adaptive solution developed by the specific group.
Collapse
Affiliation(s)
- Digby Elliott
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK.
| | - James Lyons
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Spencer J Hayes
- Department of Psychology and Human Development, University College London, London, UK
| | | | - Steve Hansen
- School of Physical and Health Education, Nipissing University, North Bay, ON, Canada
| | - Lawrence E M Grierson
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Nathan C Foster
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - James W Roberts
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK
| | - Simon J Bennett
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|