1
|
Koginov G, Wolf P, Schmidt K, Duarte JE, Riener R. Guided Exploration Leads to Faster Familiarization with a Wearable Robot: First Results of an Innovative Protocol. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941259 DOI: 10.1109/icorr58425.2023.10304725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Wearable robots show promise in addressing physical and functional deficits in individuals with mobility impairments. However, the process of learning to use these devices can take a long time. In this study, we propose a novel protocol to support the familiarization process with a wearable robot (the Myosuit) and achieve faster walking speeds. The protocol involves applying an anterior pulling force while participants perform a series of 10-meter Walking Tests (10mWT) with or without the Myosuit under various experimental conditions. We hypothesized that guiding the exploration of novel walking patterns can help the users learn to exploit the Myosuit's assistance faster by leading to larger step lengths and ultimately higher walking speeds. In this paper, we present the preliminary results of the protocol with seven participants with lower-limb mobility impairments. Participants who were assisted by the Myosuit showed a continuous increase in walking speed over the course of the pulling part of the experiment with a maximum increase of 41.3% (10.4%) when compared to the baseline 10mWT. Following the removal of the pulling force, these participants continued to show an increased walking speed while being supported by the Myosuit. This higher walking speed was primarily due to a significant increase in step length of 24% (16.6%) and cadence of 11% (8.9%). The results of this study may help the development of familiarization techniques for wearable robots.
Collapse
|
2
|
Merkulyeva N, Lyakhovetskii V, Gorskii O, Musienko P. Differences in backward and forward treadmill locomotion in decerebrated cats. J Exp Biol 2022; 225:jeb244210. [PMID: 35438747 PMCID: PMC9163443 DOI: 10.1242/jeb.244210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Locomotion in different directions is vital for animal life and requires fine-adjusted neural activity of spinal networks. To compare the levels of recruitability of the locomotor circuitry responsible for forward and backward stepping, several electromyographic and kinematic characteristics of the two locomotor modes were analysed in decerebrated cats. Electrical epidural spinal cord stimulation was used to evoke forward and backward locomotion on a treadmill belt. The functional state of the bilateral spinal networks was tuned by symmetrical and asymmetrical epidural stimulation. A significant deficit in the backward but not forward stepping was observed when laterally shifted epidural stimulation was used but was not observed with central stimulation: only half of the cats were able to perform bilateral stepping, but all the cats performed forward stepping. This difference was in accordance with the features of stepping during central epidural stimulation. Both the recruitability and stability of the EMG signals as well as inter-limb coordination during backward stepping were significantly decreased compared with those during forward stepping. The possible underlying neural mechanisms of the obtained functional differences of backward and forward locomotion (spinal network organisation, commissural communication and supraspinal influence) are discussed.
Collapse
Affiliation(s)
| | | | - Oleg Gorskii
- Pavlov Institute of Physiology, 199034 St Petersburg, Russia
- Institute of Translational Biomedicine, St Petersburg State University, 199034 St Petersburg, Russia
| | - Pavel Musienko
- Pavlov Institute of Physiology, 199034 St Petersburg, Russia
- Institute of Translational Biomedicine, St Petersburg State University, 199034 St Petersburg, Russia
| |
Collapse
|
3
|
Ansari S, Ward KR, Najarian K. Motion Artifact Suppression in Impedance Pneumography Signal for Portable Monitoring of Respiration: An Adaptive Approach. IEEE J Biomed Health Inform 2016; 21:387-398. [PMID: 26863681 DOI: 10.1109/jbhi.2016.2524646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The focus of this paper is motion artifact (MA) reduction from the impedance pneumography (IP) signal, which is widely used to monitor respiration. The amplitude of the MA that contaminates the IP signal is often much larger than the amplitude of the respiratory component of the signal. Moreover, the morphology and frequency composition of the artifacts may be very similar to that of the respiration, making it difficult to remove these artifacts. The proposed filter uses a regularization term to ensure that the pattern of the filtered signal is similar to that of respiration. It also ensures that the amplitude of the filter output is within the expected range of the IP signal by imposing an ε-tube on the filtered signal. The adaptive ε-tube filter is 100 times faster than the previously proposed nonadaptive version and achieves higher accuracies. Moreover, the experimental results, using several different performance measures, suggest that the proposed method outperforms popular MA reduction methods such as normalized least mean squares (NLMS) and recursive least squares (RLS) as well as independent component analysis (ICA). When used to extract the respiratory rate, the adaptive ε-tube achieves a mean error of 1.27 breaths per minute (BPM) compared to 4.72 and 4.63 BPM for the NLMS and RLS filters, respectively. When compared to the ICA algorithm, the proposed filter has an error of 1.06 BPM compared to 3.47 BPM for ICA. The statistical analyses indicate that all of the reported performance improvements are significant.
Collapse
|
4
|
Hasmann SE, Berg D, Hobert MA, Weiss D, Lindemann U, Streffer J, Liepelt-Scarfone I, Maetzler W. Instrumented functional reach test differentiates individuals at high risk for Parkinson's disease from controls. Front Aging Neurosci 2014; 6:286. [PMID: 25386137 PMCID: PMC4208400 DOI: 10.3389/fnagi.2014.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
The functional reach (FR) test as a complex measure of balance including limits of stability has been proven to differentiate between patients with Parkinson’s disease (PD) and controls (CO). Recently, it has been shown that the instrumentation of the FR (iFR) with a wearable sensor may increase this diagnostic accuracy. This cross-sectional study aimed at investigating whether the iFR has the potential to differentiate individuals with high risk for PD (HRPD) from CO, as the delineation of such individuals would allow for, e.g., early neuromodulation. Thirteen PD patients, 13 CO, and 31 HRPD were investigated. HRPD was defined by presence of an enlarged area of hyperechogenicity in the mesencephalon on transcranial sonography and either one motor sign or two risk and prodromal markers of PD. All participants were asked to reach with their right arm forward as far as possible and hold this position for 10 s. During this period, sway parameters were assessed with an accelerometer (Dynaport, McRoberts) worn at the lower back. Extracted parameters that differed significantly between PD patients and CO in our cohort [FR distance (shorter in PD), anterior–posterior and mediolateral acceleration (both lower in PD)] as well as JERK, which has been shown to differentiate HRPD from CO and PD in a previous study, were included in a model, which was then used to differentiate HRPD from CO. The model yielded an area under the curve of 0.77, with a specificity of 85%, and a sensitivity of 74%. These results suggest that the iFR can contribute to an assessment panel focusing on the definition of HRPD individuals.
Collapse
Affiliation(s)
- Sandra E Hasmann
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Daniela Berg
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Markus A Hobert
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - David Weiss
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Ulrich Lindemann
- Department of Clinical Gerontology and Rehabilitation, Robert-Bosch-Hospital , Stuttgart , Germany
| | - Johannes Streffer
- Janssen Research and Development, Janssen-Pharmaceutical Companies of Johnson and Johnson , Beerse , Belgium
| | - Inga Liepelt-Scarfone
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany ; German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| |
Collapse
|
5
|
Wang S, Gao Z, Li G, Feng Z. Adaptive pulse oximeter with dual-wavelength based on wavelet transforms. OPTICS EXPRESS 2013; 21:23058-23067. [PMID: 24104221 DOI: 10.1364/oe.21.023058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pulse oximeter is widely used in the monitoring of blood oxygen in clinic for its convenience and efficiency. However, synchronizing light source flashing with data collecting is required, otherwise the separation of the data from different LEDs will fail. More importantly, synchronous acquisition makes the pulse oximetry system vulnerable. Meanwhile, the pulse waveform extraction is a crucial procedure in the measurement. Hence, in this paper, an asynchronous acquisition pulse oximetry system based on wavelet transform has been built. PhotoPlethysmoGraph (PPG) and photoelectric detection technology are applied in our homemade system. The adaptive soft-threshold de-noising is realized by Stein's Unbiased Risk Estimate (SURE). The principle and system configuration are described. The preliminary experiment results from wavelet transforms and Fourier transforms are compared. The results show that our homemade system is adaptive, accurate, robust and simple.
Collapse
|
6
|
Kim HD, Brunt D. The effect of a sensory perturbation on step direction or length while crossing an obstacle from quiet stance. Gait Posture 2009; 30:1-4. [PMID: 19346130 DOI: 10.1016/j.gaitpost.2009.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 02/11/2009] [Accepted: 02/14/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS The purpose of this study was to investigate the effect of a sensory perturbation on step length and direction while crossing an obstacle from quiet stance. METHODS Nine healthy adults were asked to step over an obstacle to land on a primary target (normal stepping condition). Following a light signal subjects had to respond as quickly as possible by stepping to secondary targets either forward or diagonal to the primary target. RESULTS Distinct changes in the slope of the anterior-posterior (Fx) and medial-lateral (Fy) ground reaction forces occurred 176 ms following the light signal. For diagonal stepping stance limb tibialis anterior (TA) and bilateral gluteus medius (GM) were responsible for directing the swing limb to the target. An increase in step length towards the long target was achieved primarily by activation of bilateral GM. CONCLUSIONS Both EMG and force plate changes suggest that diagonal stepping is a more complex and challenging task than long stepping.
Collapse
Affiliation(s)
- Hyeong-Dong Kim
- Department of Physical Therapy, College of Health Science, Catholic University of Daegu, 330 Geumnak 1-ri, Hayang-eup, Gyeongsan-si, Gyeongbuk 712-702, Republic of Korea.
| | | |
Collapse
|