1
|
Veerubhotla A, Pilkar R, Ehrenberg N, Nolan KJ. Enhancing sensory acuity and balance function using near-sensory biofeedback-based perturbation intervention for individuals with traumatic brain injury. NeuroRehabilitation 2021; 48:29-37. [PMID: 33386818 DOI: 10.3233/nre-201502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACGROUND Interventions addressing balance dysfunction after traumatic brain injury (TBI) only target compensatory aspects and do not investigate perceptual mechanisms such as sensory acuity. OBJECTIVE To evaluate the efficacy of a novel intervention that integrates sensory acuity with a perturbation-based approach for improving the perception and functional balance after TBI. METHODS A two-group design was implemented to evaluate the effect of a novel, perturbation-based balance intervention. The intervention group (n = 5) performed the intervention with the sinusoidal (0.33, 0.5, and 1 Hz) perturbations to the base of support with amplitudes derived using our novel outcome of sensory acuity - perturbation perception threshold (PPT). The efficacy is evaluated using changes in PPT and functional outcomes (Berg Balance Scale (BBS), Timed-up and Go (TUG), 5-meter walk test (5MWT), and 10-meter walk test (10MWT)). RESULTS There was a significant post-intervention change in PPT for 0.33 Hz (p = 0.021). Additionally, clinically and statistically significant improvements in TUG (p = 0.03), 5MWT (p = 0.05), and 10MWT (p = 0.04) were observed. CONCLUSIONS This study provides preliminary efficacy of a novel, near-sensory balance intervention for individuals with TBI. The use of PPT is suggested for a comprehensive understanding and treatment of balance dysfunction. The promising results support the investigation in a larger cohort.
Collapse
Affiliation(s)
- Akhila Veerubhotla
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - Rakesh Pilkar
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - Naphtaly Ehrenberg
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Karen J Nolan
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
2
|
Pilkar R, Karunakaran KK, Veerubhotla A, Ehrenberg N, Ibironke O, Nolan KJ. Evaluating Sensory Acuity as a Marker of Balance Dysfunction After a Traumatic Brain Injury: A Psychophysical Approach. Front Neurosci 2020; 14:836. [PMID: 32848585 PMCID: PMC7431558 DOI: 10.3389/fnins.2020.00836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/17/2020] [Indexed: 02/01/2023] Open
Abstract
There is limited research on sensory acuity i.e., ability to perceive external perturbations via body-sway during standing in individuals with a traumatic brain injury (TBI). It is unclear whether sensory acuity diminishes after a TBI and if it is a contributing factor to balance dysfunction. The objective of this investigation is to first objectively quantify the sensory acuity in terms of perturbation perception threshold (PPT) and determine if it is related to functional outcomes of static and dynamic balance. Ten individuals with chronic TBI and 11 age-matched healthy controls (HC) performed PPT assessments at 0.33, 0.5, and 1 Hz horizontal perturbations to the base of support in the anterior-posterior direction, and a battery of functional assessments of static and dynamic balance and mobility [Berg balance scale (BBS), timed-up and go (TUG) and 5-m (5MWT) and 10-m walk test (10MWT)]. A psychophysical approach based on Single Interval Adjustment Matrix Protocol (SIAM), i.e., a yes-no task, was used to quantify the multi-sensory thresholds of perceived external perturbations to calculate PPT. A mixed-design analysis of variance (ANOVA) and post-hoc analyses were performed using independent and paired t-tests to evaluate within and between-group differences. Pearson correlation was computed to determine the relationship between the PPT and functional measures. The PPT values were significantly higher for the TBI group (0.33 Hz: 2.97 ± 1.0, 0.5 Hz: 2.39 ± 0.7, 1 Hz: 1.22 ± 0.4) compared to the HC group (0.33 Hz: 1.03 ± 0.6, 0.5 Hz: 0.89 ± 0.4, 1 Hz: 0.42 ± 0.2) for all three perturbation frequencies (p < 0.006 post Bonferroni correction). For the TBI group, the PPT for 1 Hz perturbations showed significant correlation with the functional measures of balance (BBS: r = −0.66, p = 0.037; TUG: r = 0.78, p = 0.008; 5MWT: r = 0.67, p = 0.034, 10MWT: r = 0.76, p = 0.012). These findings demonstrate that individuals with TBI have diminished sensory acuity during standing which may be linked to impaired balance function after TBI.
Collapse
Affiliation(s)
- Rakesh Pilkar
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kiran K Karunakaran
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States.,New Jersey Institute of Technology, Newark, NJ, United States.,Children's Specialized Hospital, New Brunswick, NJ, United States
| | - Akhila Veerubhotla
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Naphtaly Ehrenberg
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Oluwaseun Ibironke
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Karen J Nolan
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States.,Children's Specialized Hospital, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Summa S, Gori R, Castelli E, Petrarca M. Development of a dynamic oriented rehabilitative integrated system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5245-5250. [PMID: 31947041 DOI: 10.1109/embc.2019.8857814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Moving platform are introduced in the field of the study of posturography since '70 years. Commercial platforms have some limits: a limited number of degrees of freedom; preconfigured protocols and usually they are expensive. In order to overcome these limits, we developed a robotized platform: DORIS. We aimed at realizing a versatile solution that can be applied both for research purpose but also for personalizing the training of equilibrium and gait. We reached these goals by means of a Stewart platform that was realized with linear actuators and a supporting plate. Each actuator is provided by a monoaxial ad hoc built load cell. Position and force control allow a multipurpose range of movement and a reactive interaction with the force applied by the subject. TCP/IP protocol guarantees the communication between the platform and other systems. Therefore, we integrated DORIS with motion analysis system, EMG system and virtual reality. The adopted solution offers the opportunity to manipulate available information by means of different coupling of visual, vestibular and plantar feet pressure inputs. The full control of its movement and of human dynamic interaction is a further benefit for the identification of innovative solutions for research and physical rehabilitation in a field that is strongly investigated, but still open.
Collapse
|
4
|
Development of a Dynamic Oriented Rehabilitative Integrated System (DORIS) and Preliminary Tests. SENSORS 2019; 19:s19153402. [PMID: 31382530 PMCID: PMC6696084 DOI: 10.3390/s19153402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
Moving platforms were introduced in the field of the study of posturography since the 1970s. Commercial platforms have some limits: a limited number of degrees of freedom, pre-configured protocols, and, usually, they are expensive. In order to overcome these limits, we developed a robotic platform: Dynamic Oriented Rehabilitative Integrated System (DORIS). We aimed at realizing a versatile solution that can be applied both for research purposes but also for personalizing the training of equilibrium and gait. We reached these goals by means of a Stewart platform that was realized with linear actuators and a supporting plate. Each actuator is provided by an ad hoc built monoaxial load cell. Position control allows a large range of movements and load cells measure the reactive force applied by the subject. Transmission Control Protocol/Internet Protocol (TCP/IP) guarantees the communication between the platform and other systems. We integrated DORIS with a motion analysis system, an electromyography (EMG) system, and a virtual reality environment (VR). This integration and the custom design of the platform offer the opportunity to manipulate the available information of the subject under analysis, which uses visual, vestibular, and plantar feet pressure inputs. The full access to the human movements and to the dynamic interaction is a further benefit for the identification of innovative solutions for research and physical rehabilitation purposes in a field that is widely investigated but still open.
Collapse
|
5
|
Dong X, Robinson CJ, Fulk G. Psychophysical detection thresholds in anterior horizontal translations of seated and standing blindfolded subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:4112-4115. [PMID: 22255244 DOI: 10.1109/iembs.2011.6091021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To help separate out the contributions of the somatosensory and vestibular systems to postural and sway control, short (1, 4 and 16 mm) anterior translations of lengths less than the normal sway path length were made of a platform upon which blindfolded young adult test subjects (n=12) stood or sat. Acceleration detection thresholds from these short moves were compared in standing vs seated conditions using a 2-Alternative [Interval] Forced-Choice psychophysical test protocol. A negative power law trading relationship was found between peak acceleration threshold and move length and duration for standing subjects. For these same subjects while seated, acceleration thresholds for all lengths were nearly constant, and showed a weak positive power law trade between threshold and move length or duration. This latter observation is consistent with that of Benson et al '86, who also observed a positive power law trade relationship between acceleration threshold and move duration for seated subjects. Thresholds were higher at 1mm for standing vs. seated tests; while at 16 mm, standing tests had lower thresholds compared to those obtained for the seated tests. These results suggest that the vestibular system provides the principal input for detecting these short translations while seated, but not while standing.
Collapse
Affiliation(s)
- Xiaoxi Dong
- Dept of Electrical and Computer Engineering and in CREST, Clarkson Univ, Potsdam, NY 13699, USA.
| | | | | |
Collapse
|
6
|
Patanè F, Cappa P. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance. IEEE Trans Neural Syst Rehabil Eng 2010; 19:157-66. [PMID: 20977987 DOI: 10.1109/tnsre.2010.2089535] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.
Collapse
Affiliation(s)
- Fabrizio Patanè
- Department of Mechanics and Aeronautics, “Sapienza” University of Rome, Italy.
| | | |
Collapse
|
7
|
Bhatkar VV, Skufca JD, Pilkar RB, Storey CM, Robinson CJ. Categorizing and comparing psychophysical detection strategies based on biomechanical responses to short postural perturbations. Biomed Eng Online 2010; 9:58. [PMID: 20932297 PMCID: PMC2959020 DOI: 10.1186/1475-925x-9-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 10/08/2010] [Indexed: 12/05/2022] Open
Abstract
Background A fundamental unsolved problem in psychophysical detection experiments is in discriminating guesses from the correct responses. This paper proposes a coherent solution to this problem by presenting a novel classification method that compares biomechanical and psychological responses. Methods Subjects (13) stood on a platform that was translated anteriorly 16 mm to find psychophysical detection thresholds through a Adaptive 2-Alternative-Forced-Choice (2AFC) task repeated over 30 separate sequential trials. Anterior-posterior center-of-pressure (APCoP) changes (i.e., the biomechanical response RB) were analyzed to determine whether sufficient biomechanical information was available to support a subject's psychophysical selection (RΨ) of interval 1 or 2 as the stimulus interval. A time-series-bitmap approach was used to identify anomalies in interval 1 (a1) and interval 2 (a2) that were present in the resultant APCoP signal. If a1 > a2 then RB = Interval 1. If a1 < a2, then RB= Interval 2. If a2 - a1 < 0.1, RB was set to 0 (no significant difference present in the anomaly scores of interval 1 and 2). Results By considering both biomechanical (RB) and psychophysical (RΨ) responses, each trial run could be classified as a: 1) HIT (and True Negative), if RB and RΨ both matched the stimulus interval (SI); 2) MISS, if RB matched SI but the subject's reported response did not; 3) PSUEDO HIT, if the subject signalled the correct SI, but RB was linked to the non-SI; 4) FALSE POSITIVE, if RB = RΨ, and both associated to non-SI; and 5) GUESS, if RB = 0, if insufficient APCoP differences existed to distinguish SI. Ensemble averaging the data for each of the above categories amplified the anomalous behavior of the APCoP response. Conclusions The major contributions of this novel classification scheme were to define and verify by logistic models a 'GUESS' category in these psychophysical threshold detection experiments, and to add an additional descriptor, "PSEUDO HIT". This improved classification methodology potentially could be applied to psychophysical detection experiments of other sensory modalities.
Collapse
|
8
|
Fulk GD, Robinson CJ, Mondal S, Storey CM, Hollister AM. The effects of diabetes and/or peripheral neuropathy in detecting short postural perturbations in mature adults. J Neuroeng Rehabil 2010; 7:44. [PMID: 20836855 PMCID: PMC2945352 DOI: 10.1186/1743-0003-7-44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 09/13/2010] [Indexed: 11/25/2022] Open
Abstract
Background This study explored the effects of diabetes mellitus (DM) and peripheral neuropathy (PN) on the ability to detect near-threshold postural perturbations. Methods 83 subjects participated; 32 with type II DM (25 with PN and 7 without PN), 19 with PN without DM, and 32 without DM or PN. Peak acceleration thresholds for detecting anterior platform translations of 1 mm, 4 mm, and 16 mm displacements were determined. A 2(DM) × 2(PN) factorial MANCOVA with weight as a covariate was calculated to compare acceleration detection thresholds among subjects who had DM or did not and who had PN or did not. Results There was a main effect for DM but not for PN. Post hoc analysis revealed that subjects with DM required higher accelerations to detect a 1 mm and 4 mm displacement. Conclusion Our findings suggest that PN may not be the only cause of impaired balance in people with DM. Clinicians should be aware that diabetes itself might negatively impact the postural control system.
Collapse
Affiliation(s)
- George D Fulk
- Department of Physical Therapy, Clarkson University, Potsdam, NY, USA.
| | | | | | | | | |
Collapse
|
9
|
Cappa P, Jackson JL, Patanè F. Moment measurement accuracy of a parallel spherical robot for dynamic posturography. IEEE Trans Biomed Eng 2010; 57:1198-208. [PMID: 20089472 DOI: 10.1109/tbme.2009.2037807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper characterizes the moment measurement accuracy for a novel parallel spherical robot (SR) for dynamic posturography, controllable by position or impedance. The SR consists of three linear motors placed on a support base, a moving base, and three passive arms equipped with uniaxial load cells permitting impedance controlled perturbations. To evaluate the accuracy, a subject stood still on the SR, set in position control mode, while selected sinusoidal trajectories were applied. The moments computed by the load cells were compared to the value measured by a six-component force platform, placed on top of the rotating base. For the intended application of the SR, the errors were negligible with the worse case of only 4 Nm in a total of 15 trials (five conditions, three repetitions). The observed moment error was related mainly to the intrinsic accuracy of the sensors, equal to about 7 N. To demonstrate clinical applicability, the platform was set to impedance control mode and a protocol was tested with a 12-year-old girl with brain injury and a group of four healthy subjects. In total, 24 trials (eight conditions, three repetitions) were recorded for each subject. The results of this pilot study identified distinctive postural behaviors and therefore showed that the SR can be considered as an effective tool for dynamic posturography.
Collapse
Affiliation(s)
- Paolo Cappa
- Department of Mechanics and Aeronautics, Sapienza University of Rome, Rome, Italy.
| | | | | |
Collapse
|
10
|
Schilling RJ, Bollt EM, Fulk GD, Skufca JD, Al-Ajlouni AF, Robinson CJ. A quiet standing index for testing the postural sway of healthy and diabetic adults across a range of ages. IEEE Trans Biomed Eng 2009; 56:292-302. [PMID: 19342327 DOI: 10.1109/tbme.2008.2003270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A quiet standing index is developed for tracking the postural sway of healthy and diabetic adults over a range of ages. Several postural sway features are combined into a single composite feature C that increases with age a. Sway features are ranked based on the r(2)-values of their linear regression models, and the composite feature is a weighted sum of selected sway features with optimal weighting coefficients determined using principal component analysis. A performance index based on both reliability and sensitivity is used to determine the optimal number of features. The features used to form C include power and distance metrics. The quiet standing index is a scalar that compares the composite feature C to a linear regression model f(a) using C(')(a) = C/f(a). For a motionless subject, C(') = 0, and when the composite feature exactly matches the healthy control (HC) model, C(') = 1. Values of C(') >> 1 represent excessive postural sway and may indicate impaired postural control. Diabetic neurologically intact subjects, nondiabetic peripheral neuropathy subjects (PN), and diabetic PN subjects (DPN) were evaluated. The quiet standing indexes of the PN and DPN groups showed statistically significant increases over the HC group. Changes in the quiet standing index over time may be useful in identifying people with impaired balance who may be at an increased risk of falling.
Collapse
Affiliation(s)
- Robert J Schilling
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | |
Collapse
|