1
|
Shiue SJ, Wu MS, Chiang YH, Lin HY. Bacteriophage-cocktail hydrogel dressing to prevent multiple bacterial infections and heal diabetic ulcers in mice. J Biomed Mater Res A 2024; 112:1846-1859. [PMID: 38706446 DOI: 10.1002/jbm.a.37728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%-5.7% of the phages embedded in 24 h, and reduced between 37%-79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
2
|
Tariq MU, Muzammil S, Ashfaq UA, Arshad MI, Shafique M, Ejaz H, Khurshid M, Eltayeb LB, Mazhari BBZ, Elamir MYM, Al-Harthi HF, Rasool MH, Aslam B. Characterizing the bacteriophage PKp-V1 as a potential treatment for ESBL-producing hypervirulent K1 Klebsiella pneumoniae ST258 isolated from veterinary specimens. Vet World 2024; 17:2008-2016. [PMID: 39507776 PMCID: PMC11536733 DOI: 10.14202/vetworld.2024.2008-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim The dearth of new antibiotics necessitates alternative approaches for managing infections caused by resistant superbugs. This study aimed to evaluate the lytic potential of the purified bacteriophage PKp-V1 against extended-spectrum β-lactamase (ESBL) harboring hypervirulent Klebsiella pneumoniae (hvKp)-K1 recovered from veterinary specimens. Materials and Methods A total of 50 samples were collected from various veterinary specimens to isolate K. pneumoniae, followed by antimicrobial susceptibility testing and molecular detection of various virulence and ESBL genes. Multilocus sequence typing of the isolates was performed to identify prevalent sequence types. The bacteriophages were isolated using the double-agar overlay method and characterized using transmission electron microscopy, spot tests, plaque assays, stability tests, and one-step growth curve assays. Results Among 17 (34%) confirmed K. pneumoniae isolates, 6 (35%) were hvKp, whereas 13 (76%) isolates belonging to the K1 type were positive for the wzy (K1) virulence gene. All (100%) hvKp isolates exhibited the allelic profile of ST258. Overall, PKp-V1 exhibited an 88 % (15/17; (p ≤ 0.05) host range, among which all (100 %; p ≤ 0.01) hvKp isolates were susceptible to PKp-V1. PKp-V1 exhibited a lytic phage titer of 2.4 × 108 plaque forming unit (PFU)/mL at temperatures ranging from 25°C to 37°C. The lytic phage titers of PKp-V1 at pH = 8 and 0.5% chloroform were 2.1 × 108 PFU/mL and 7.2 × 109 PFU/mL, respectively. Conclusion Although the incidence of ESBL-infected K. pneumoniae in veterinary settings is worrisome, PKp-V1 phages showed considerable lytic action against the host bacterium, indicating the potential of PKp-V1 as a possible alternative therapeutic option against MDR K. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Usama Tariq
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Shafique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University-Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat 75911, Saudi Arabia
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University 21995, Saudi Arabia
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Senhaji-Kacha A, Bernabéu-Gimeno M, Domingo-Calap P, Aguilera-Correa JJ, Seoane-Blanco M, Otaegi-Ugartemendia S, van Raaij MJ, Esteban J, García-Quintanilla M. Isolation and characterization of two novel bacteriophages against carbapenem-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 14:1421724. [PMID: 39268483 PMCID: PMC11390652 DOI: 10.3389/fcimb.2024.1421724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The increase of antibiotic-resistant bacteria has become a global health emergency and the need to explore alternative therapeutic options arises. Phage therapy uses bacteriophages to target specific bacterial strains. Phages are highly specific and can target resistant bacteria. Currently, research in this regard is focused on ensuring reliability and safety to bring this tool into clinical practice. The first step is to conduct comprehensive preclinical research. In this work, we present two novel bacteriophages vB_Kpn_F13 and vB_Kpn_F14 isolated against clinical carbapenem-resistant Klebsiella pneumoniae strains obtained from hospital sewage. Multiple studies in vitro were conducted, such as sequencing, electron microscopy, stability, host range infectivity, planktonic effect and biofilm inhibition in order to discover their ability to be used against carbapenem-resistant K. pneumoniae pathogens causing difficult-to-treat infections.
Collapse
Affiliation(s)
- Abrar Senhaji-Kacha
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Mireia Bernabéu-Gimeno
- Institute of Biología Integrativa de Sistemas, Universitat de València-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Pilar Domingo-Calap
- Institute of Biología Integrativa de Sistemas, Universitat de València-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - John Jairo Aguilera-Correa
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Mateo Seoane-Blanco
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Sara Otaegi-Ugartemendia
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Meritxell García-Quintanilla
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| |
Collapse
|
4
|
Gholizadeh O, Ghaleh HEG, Tat M, Ranjbar R, Dorostkar R. The potential use of bacteriophages as antibacterial agents against Klebsiella pneumoniae. Virol J 2024; 21:191. [PMID: 39160541 PMCID: PMC11334591 DOI: 10.1186/s12985-024-02450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
One of the most common bacteria that cause nosocomial infections is Klebsiella pneumonia (K. pneumoniae), especially in patients who are very sick and admitted to the intensive care unit (ICU). The frequency of multi-drug-resistant Klebsiella pneumoniae (MDRKP) has dramatically increased worldwide in recent decades, posing an urgent threat to public health. The Western world's bacteriophage (phage) studies have been revitalized due to the increasing reports of antimicrobial resistance and the restricted development and discovery of new antibiotics. These factors have also spurred innovation in other scientific domains. The primary agent in phage treatment is an obligately lytic organism (called bacteriophage) that kills the corresponding bacterial host while sparing human cells and lessening the broader effects of antibiotic usage on commensal bacteria. Phage treatment is developing quickly, leading to many clinical studies and instances of life-saving medicinal use. In addition, phage treatment has a few immunological adverse effects and consequences in addition to its usefulness. Since K. pneumoniae antibiotic resistance has made treating multidrug-resistant (MDR) infections challenging, phage therapy (PT) has emerged as a novel therapeutic strategy. The effectiveness of phages has also been investigated in K. pneumoniae biofilms and animal infection models. Compared with antibiotics, PT exhibits numerous advantages, including a particular lysis spectrum, co-evolution with bacteria to avoid the emergence of phage resistance, and a higher abundance and diversity of phage resources than found in antibiotics. Moreover, phages are eliminated in the absence of a host bacterium, which makes them the only therapeutic agent that self-regulates at the sites of infection. Therefore, it is essential to pay attention to the role of PT in treating these infections. This study summarizes the state of knowledge on Klebsiella spp. phages and provides an outlook on the development of phage-based treatments that target K. pneumoniae in clinical trials.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Singh AN, Singh A, Nath G. Evaluation of bacteriophage cocktail on urinary tract infection caused by colistin-resistant Klebsiella pneumoniae in mice model. J Glob Antimicrob Resist 2024; 39:41-53. [PMID: 39159829 DOI: 10.1016/j.jgar.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE The colistin-resistant Klebsiella pneumoniae causes complicated urinary tract infections (UTIs). Of them, 73% of strains of K. pneumoniae formed moderate to strong biofilm. Multidrug-resistant (MDR)/Pandrug-resistant (PDR) bacteria causing UTIs are very challenging to conventional antibiotic therapy. However, bacteriophages may be a promising alternative as they easily disrupt the biofilm and act on receptors unrelated to antibiotic resistance mechanisms. This preclinical study evaluated the efficacy of a phage cocktail with different routes and dosages (in quantity and frequency) to eradicate the K. pneumoniae-associated UTI in the mice model. METHODS The three lytic phages with the broadest spectrum activity (ΦKpnBHU1, ΦKpnBHU2 and ΦKpnBHU3) were meticulously characterized using SEM and sequencing. The cocktails were administered to mice through urethral, rectal, subcutaneous and oral routes after establishing the UTI with 1 × 108 colony-forming unit/mouse (CFU/mouse) of K. pneumoniae (KpnBHU09) resistant to both the drugs carbapenem and colistin. The efficacy of different routes with varying dosages and frequency of administration was thoroughly optimized. RESULTS We observed that two doses of a phage cocktail containing 1 × 105 Plaque-Forming Unit (PFU/mouse) and a single dose of 1 × 109 PFU/mouse per urethra could eradicate KpnBHU09. Intriguingly, the non-invasive administration through oral and rectal routes required higher concentration and many dosages of phages to eliminate KpnBHU09 at any stage of acute UTI. The subcutaneous route was found unsatisfactory in curing the infection. CONCLUSION Bacteriophage cocktails administered through transurethral, oral and rectal routes may cure UTIs.
Collapse
Affiliation(s)
- Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kelishomi FZ, Nikkhahi F, Amereh S, Ghayyaz F, Marashi SMA, Javadi A, Shahbazi G, Khakpour M. Evaluation of the therapeutic effect of a novel bacteriophage in the healing process of infected wounds with Klebsiella pneumoniae in mice. J Glob Antimicrob Resist 2024; 36:371-378. [PMID: 38307250 DOI: 10.1016/j.jgar.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Bacterial wound infections have recently become a threat to public health. The emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae highlights the need for a new treatment method. The effectiveness of bacteriophages has been observed for several infections in animal models and human trials. In this study, we assessed the effectiveness of bacteriophages in the treatment of wound infections associated with MDR and biofilm-producing K. pneumoniae and compared its effectiveness with that of gentamicin. METHODS A lytic phage against MDR K. pneumoniae was isolated and identified. The effectiveness of phages in the treatment of wound infection in mice was investigated and its effectiveness was compared with gentamicin. RESULTS The results showed that the isolated phage belonged to the Drexlerviridae family. This phage acts like gentamicin and effectively eliminates bacteria from wounds. In addition, mice in the phage therapy group were in better physical condition. CONCLUSION Our results demonstrated the success of phage therapy in the treatment of mice wounds infected with K. pneumoniae. These results indicate the feasibility of topical phage therapy for the safe treatment of wound infections.
Collapse
Affiliation(s)
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Samira Amereh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Ghayyaz
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Amir Javadi
- Department of Community Medicine, School of Medicine, Qazvin University of medical Sciences, Qazvin, Iran
| | - Gholamhassan Shahbazi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohadeseh Khakpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Bird JT, Burke KA, Urick CD, Braverman JL, Mzhavia N, Ellison DW, Nikolich MP, Filippov AA. Genome sequence of the Klebsiella quasipneumoniae bacteriophage EKq1 with activity against Klebsiella pneumoniae. Microbiol Resour Announc 2024; 13:e0095423. [PMID: 38032190 DOI: 10.1128/mra.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
We describe the genome of a lytic phage EKq1 isolated on Klebsiella quasipneumoniae, with activity against Klebsiella pneumoniae. EKq1 is an unclassified representative of the class Caudoviricetes, similar to Klebsiella phages VLCpiS8c, phiKp_7-2, and vB_KleS-HSE3. The 48,244-bp genome has a GC content of 56.43% and 63 predicted protein-coding genes.
Collapse
Affiliation(s)
- Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas , Little Rock, Arkansas, USA
| | - Kevin A Burke
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Caitlin D Urick
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Jamie L Braverman
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Damon W Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Mikeljon P Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| | - Andrey A Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Kulshrestha M, Tiwari M, Tiwari V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb Pathog 2024; 186:106467. [PMID: 38036110 DOI: 10.1016/j.micpath.2023.106467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The ESKAPE pathogens are the primary threat due to their constant spread of drug resistance worldwide. These pathogens are also regarded as opportunistic pathogens and could potentially cause nosocomial infections. Most of the ESKAPE pathogens have developed resistance to almost all the antibiotics that are used against them. Therefore, to deal with antimicrobial resistance, there is an urgent requirement for alternative non-antibiotic strategies to combat this rising issue of drug-resistant organisms. One of the promising alternatives to this scenario is implementing bacteriophage therapy. This under-explored mode of treatment in modern medicine has posed several concerns, such as preferable phages for the treatment, impact on the microbiome (or gut microflora), dose optimisation, safety, etc. The review will cover a rationale for phage therapy, clinical challenges, and propose phage therapy as an effective therapeutic against bacterial coinfections during pandemics. This review also addresses the expected uncertainties for administering the phage as a treatment against the ESKAPE pathogens and the advantages of using lytic phage over temperate, the immune response to phages, and phages in combinational therapies. The interaction between bacteria and bacteriophages in humans and countless animal models can also be used to design novel and futuristic therapeutics like personalised medicine or bacteriophages as anti-biofilm agents. Hence, this review explores different aspects of phage therapy and its potential to emerge as a frontline therapy against the ESKAPE bacterial pathogen.
Collapse
Affiliation(s)
- Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
9
|
Nikapitiya C, Chandrarathna HPSU, Dias MKHM, Lee J, De Zoysa M. Characterization and biocontrol efficacy of lytic phage (KPP-1) that infects multidrug resistant Klebsiella variicola. Braz J Microbiol 2023; 54:2509-2520. [PMID: 37368195 PMCID: PMC10484831 DOI: 10.1007/s42770-023-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Klebsiella variicola strain was identified from a natural water stream. Novel phage (KPP-1) infecting K. variicola was isolated and characterized. The biocontrol efficacy of KPP-1 against K. variicola-infected adult zebrafish was also investigated. The host K. variicola strain was resistant to six of the antibiotics tested and comprised the virulence genes kfuBC, fim, ureA, and Wza-Wzb-Wzccps. Morphological analysis by transmission electron microscopy revealed that KPP-1 has icosahedron head and tail structures. The latent period and burst size of KPP-1 were 20 min and 88 PFU per infected cell, respectively, at a multiplicity of infection of 0.1. KPP-1 was stable over a broad pH range (3-11), temperature (4-50 °C), and salinity (0.1-3%). KPP-1 inhibits the growth of K. variicola in vitro and in vivo. In the zebrafish infection model, treatment with KPP-1-infected K. variicola demonstrated 56% of cumulative survival. This suggests the possibility of developing KPP-1 as a potential biocontrol agent against multidrug-resistant K. variicola that belongs to the K. pneumoniae complex.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - H P S U Chandrarathna
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | | | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Rahimi S, Bakht M, Javadi A, Foroughi F, Marashi SMA, Nikkhahi F. Characterization of novel bacteriophage PSKP16 and its therapeutic potential against β-lactamase and biofilm producer strain of K2-Hypervirulent Klebsiella pneumoniae pneumonia infection in mice model. BMC Microbiol 2023; 23:233. [PMID: 37612659 PMCID: PMC10464470 DOI: 10.1186/s12866-023-02979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Severe infections caused by β- lactamase producers, hypervirulent Klebsiella pneumoniae (BhvKp) with K2 serotype, highlight emergency need for new therapeutic strategies against this pathogen. We aimed to assess the efficacy of a novel phage, PSKP16, in the treating of pneumonia induced by BhvKp in mice models. METHOD Genome sequences of PSKP16 were analyzed, and associated information can be found in NCBI. We applied treatment in two ways: by using mice for immediate and delayed treatments. Moreover, acute pneumonia obtained by BhvKp with intranasal method, was characterized in terms of histopathology of pulmonary lesions, biomarkers of inflammation level, leukocytes cells infiltration extent in mice, and was assessed treatment of them with PSKP16 multiplicity of infection (MOI: 10), either individually or in combination with gentamicin. Assessment of the ability of PSKP16 to inhibit BhvKp biofilm was studied. RESULTS PSKP16 was associated with the Drexlerviridae family, and had a genome size of 46,712 bp, and 67 predicted ORFs. Herein, prompt phage administration's efficacy to decrease bacterial load and improve the survival rate in pneumonia models was faster than the synergism model with delay, but both almost displayed similar endpoints. The distribution of BhvKp strains in the lung was consistent with the histopathological findings, simultaneous inflammation, and level of serum tumor necrosis factor-α (TNF α). The phage treatment presented a lack of severe lesions and alveolar edema, reduction of inflammatory cell infiltration, which not only was it not associated with an over-inflammation but also provided a faster correction of blood cell count abnormalities compared to gentamicin. Phage with a high concentration in in vitro model effectively eliminated biofilms. CONCLUSION It is essential to raise clinical awareness and management of BhvKp infections, signaled as the next superbug in waiting. The results of our study underscore the importance of PSKP16 as a phage with promising therapeutic potential in treating BhvKp-induced pneumonia.
Collapse
Affiliation(s)
- Sara Rahimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Community Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
11
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
12
|
Tisalema-Guanopatín E, Cabezas-Mera F, Nolivos-Rodríguez K, Fierro I, Pazmiño L, Garzon-Chavez D, Debut A, Vizuete K, Reyes JA. New Bacteriophages Members of the Ackermannviridae Family Specific for Klebsiella pneumoniae ST258. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:99-107. [PMID: 37350993 PMCID: PMC10282792 DOI: 10.1089/phage.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae, particularly isolates classified as sequence-type 258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial infections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged as a promising treatment option for these scenarios. Methodology and Results We report the isolation and characterization of three new phages against Klebsiella pneumoniae ST258 strains recovered from Machángara river wastewater. These new members of the Ackermannviridae family showed stability over a wide temperature and pH range and burst sizes ranging from 6 to 44 plaque-forming units per bacteria. Their genomes were about 157 kilobases, with an average guanine-cytosine content of 46.4% and showed presence of several transfer RNAs, which also allowed us to predict in silico a lytic replicative cycle due to the presence of endolysins and lysozymes. Conclusion Three lytic phages of Ackermannviridae family were recovered against Klebsiella pneumoniae ST258 strains from sewage; however, further characterization is needed for future consideration as therapeutic alternatives.
Collapse
Affiliation(s)
- Estefanía Tisalema-Guanopatín
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK, Quito, Ecuador
| | - Fausto Cabezas-Mera
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Karla Nolivos-Rodríguez
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Isabel Fierro
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Lourdes Pazmiño
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud (COCSA), Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jorge Aníbal Reyes
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
- Departamento de Microbiología, Hospital del IESS Quito Sur, Avenida Moraspungo, Quito, Ecuador
| |
Collapse
|
13
|
Newberry F, Shibu P, Smith-Zaitlik T, Eladawy M, McCartney AL, Hoyles L, Negus D. Lytic bacteriophage vB_KmiS-Kmi2C disrupts biofilms formed by members of the Klebsiella oxytoca complex, and represents a novel virus family and genus. J Appl Microbiol 2023; 134:lxad079. [PMID: 37070958 DOI: 10.1093/jambio/lxad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
AIMS This study aimed to characterize the lytic phage vB_KmiS-Kmi2C, isolated from sewage water on a GES-positive strain of Klebsiella michiganensis. METHODS AND RESULTS Comparative phylogenetic and network-based analyses were used to characterize the genome of phage vB_KmiS-Kmi2C (circular genome of 42 234 bp predicted to encode 55 genes), demonstrating it shared little similarity with other known phages. The phage was lytic on clinical strains of K. oxytoca (n = 2) and K. michiganensis (n = 4), and was found to both prevent biofilm formation and disrupt established biofilms produced by these strains. CONCLUSIONS We have identified a phage capable of killing clinically relevant members of the K. oxytoca complex (KoC). The phage represents a novel virus family (proposed name Dilsviridae) and genus (proposed name Dilsvirus).
Collapse
Affiliation(s)
- Fiona Newberry
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Preetha Shibu
- Life Sciences, University of Westminster, W1W 6UW, UK
| | - Thomas Smith-Zaitlik
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Mohamed Eladawy
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Anne L McCartney
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
14
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
15
|
Pertics BZ, Kovács T, Schneider G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023; 11:microorganisms11030669. [PMID: 36985241 PMCID: PMC10051899 DOI: 10.3390/microorganisms11030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes.
Collapse
Affiliation(s)
- Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros St. 2., H-7632 Pécs, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536-200 (ext. 1908)
| |
Collapse
|
16
|
Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023; 15:pharmaceutics15020434. [PMID: 36839755 PMCID: PMC9960720 DOI: 10.3390/pharmaceutics15020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, multidrug-resistant (MDR) strains of Klebsiella pneumoniae have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with Klebsiella oxytoca strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant Klebsiella strains. Here, we present the results of a long-term study on the isolation and biology of bacteriophages active against K. pneumoniae, as well as K. oxytoca strains. We evaluated biological properties, morphology, host specificity, lytic spectrum and sensitivity of these phages to chemical agents along with their life cycle parameters such as adsorption, latent period, and burst size. Phages designated by us, vB_KpnM-52N (Kpn52N) and VB_KpnM-53N (Kpn53N), demonstrated relatively broad lytic spectra among tested Klebsiella strains, high burst size, adsorption rates and stability, which makes them promising candidates for therapeutic purposes. We also examined selected Klebsiella phages from our historical collection. Notably, one phage isolated nearly 60 years ago was successfully used in purulent cerebrospinal meningitis in a new-born and has maintained lytic activity to this day. Genomic sequences of selected phages were determined and analyzed. The phages of the sequenced genomes belong to the Slopekvirus and Jiaodavirus genus, a group of phages related to T4 at the family level. They share several features of T4 making them suitable for antibacterial therapies: the obligatorily lytic lifestyle, a lack of homologs of known virulence or antibiotic resistance genes, and a battery of enzymes degrading host DNA at infection.
Collapse
|
17
|
Zaki BM, Fahmy NA, Aziz RK, Samir R, El-Shibiny A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1077995. [PMID: 36756618 PMCID: PMC9901506 DOI: 10.3389/fcimb.2023.1077995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction The rise of infections by antibiotic-resistant bacterial pathogens is alarming. Among these, Klebsiella pneumoniae is a leading cause of death by hospital-acquired infections, and its multidrug-resistant strains are flagged as a global threat to human health, which necessitates finding novel antibiotics or alternative therapies. One promising therapeutic alternative is the use of virulent bacteriophages, which specifically target bacteria and coevolve with them to overcome potential resistance. Here, we aimed to discover specific bacteriophages with therapeutic potential against multiresistant K. pneumoniae clinical isolates. Methods and Results Out of six bacteriophages that we isolated from urban and medical sewage, phage vB_Kpn_ZCKp20p had the broadest host range and was thus characterized in detail. Transmission electron microscopy suggests vB_Kpn_ZCKp20p to be a tailed phage of the siphoviral morphotype. In vitro evaluation indicated a high lytic efficiency (30 min latent period and burst size of ∼100 PFU/cell), and extended stability at temperatures up to 70°C and a wide range of (2-12) pH. Additionally, phage vB_Kpn_ZCKp20p possesses antibiofilm activity that was evaluated by the crystal violet assay and was not cytotoxic to human skin fibroblasts. The whole genome was sequenced and annotated, uncovering one tRNA gene and 33 genes encoding proteins with assigned functions out of 85 predicted genes. Furthermore, comparative genomics and phylogenetic analysis suggest that vB_Kpn_ZCKp20p most likely represents a new species, but belongs to the same genus as Klebsiella phages ZCKP8 and 6691. Comprehensive genomic and bioinformatics analyses substantiate the safety of the phage and its strictly lytic lifestyle. Conclusion Phage vB_Kpn_ZCKp20p is a novel phage with potential to be used against biofilm-forming K. pneumoniae and could be a promising source for antibacterial and antibiofilm products, which will be individually studied experimentally in future studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ramy Karam Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
18
|
Aslam B, Siddique MH, Siddique AB, Shafique M, Muzammil S, Khurshid M, Rasool MH, Ahmad M, Chaudhry TH, Amir A, Salman M, Baloch Z, Alturki NA, Alzamami A. Distribution of mcr-1 Harboring Hypervirulent Klebsiella pneumoniae in Clinical Specimens and Lytic Activity of Bacteriophage KpnM Against Isolates. Infect Drug Resist 2022; 15:5795-5811. [PMID: 36213765 PMCID: PMC9534162 DOI: 10.2147/idr.s374503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. Methods A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. Results Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. Conclusion Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Correspondence: Bilal Aslam, Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan, Email
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tamoor Hamid Chaudhry
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
- Ahmad Alzamami, Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia, Email
| |
Collapse
|
19
|
Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nat Commun 2022; 13:5622. [PMID: 36153309 PMCID: PMC9509320 DOI: 10.1038/s41467-022-33305-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses. E. coli phage SU10 has a short non-contractile tail. Here, the authors show that after cell binding, nozzle proteins and tail fibers of SU10 change conformation to form a nozzle that enables the delivery of the phage DNA into the bacterial cytoplasm.
Collapse
|
20
|
Rai P, Shetty SS, Prabell S, Kuntar A, Pinto D, Kumar BK, Divyashree M, Raj JRM, Premanath R, Deekshit VK, Karunasagar I, Karunasagar I. Characterisation of broad-spectrum phiKZ like jumbo phage and its utilisation in controlling multidrug-resistant Pseudomonas aeruginosa isolates. Microb Pathog 2022; 172:105767. [PMID: 36096457 DOI: 10.1016/j.micpath.2022.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
The emergence of highly virulent multidrug-resistant P. aeruginosa has become increasingly evident among hospital-acquired infections and has raised the need for alternative therapies. Phage therapy can be one such alternative to antibiotic therapy to combat multidrug-resistant pathogenic bacteria, but this requires the availability of phages with a broad host range. In this study, isolation and molecular characterisation of P. aeruginosa specific phages were carried out. A total of 17 phages isolated showed different spectra of activity and efficiency of lysis against 82 isolates of P. aeruginosa obtained from clinical samples (n = 13), hospital effluent (n = 46) and fish processing plant effluent (n = 23). Antibiotic susceptibility test results revealed multi-drug resistance in 61 of the total 82 isolates. Three new jumbo lytic P. aeruginosa specific broad host range phages were isolated and characterised in this present study belonged to the family Myoviridae (order Caudovirales). The genetic analysis of ɸU5 revealed that phage has a genome size of 282.6 kbp with 373 putative open reading frames (ORFs), and its genetic architecture is similar to phiKZ like jumbo phages infecting P. aeruginosa. The bacteriophages isolated in this study had lytic ability against biofilm-forming and multidrug-resistant P. aeruginosa and could be candidates for further studies towards phage therapy.
Collapse
Affiliation(s)
- Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Shruthi Seetharam Shetty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Sujana Prabell
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Akshatha Kuntar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Deepak Pinto
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Mithoor Divyashree
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Juliet Roshini Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ramya Premanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
21
|
Smith-Zaitlik T, Shibu P, McCartney AL, Foster G, Hoyles L, Negus D. Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36156193 DOI: 10.1099/mic.0.001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.
Collapse
Affiliation(s)
| | - Preetha Shibu
- Life Sciences, University of Westminster, London, UK.,Present address: Berkshire and Surrey Pathology Services, Frimley Health NHS Trust, Wexham Park Hospital, Slough, UK
| | - Anne L McCartney
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| |
Collapse
|
22
|
Ferreira R, Sousa C, Gonçalves RFS, Pinheiro AC, Oleastro M, Wagemans J, Lavigne R, Figueiredo C, Azeredo J, Melo LDR. Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. Int J Mol Sci 2022; 23:ijms23147885. [PMID: 35887231 PMCID: PMC9319048 DOI: 10.3390/ijms23147885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| | - Cláudia Sousa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel F. S. Gonçalves
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cristina Pinheiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Ceu Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Azeredo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís D. R. Melo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
23
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
24
|
Balcão VM, Moreli FC, Silva EC, Belline BG, Martins LF, Rossi FPN, Pereira C, Vila MMDC, da Silva AM. Isolation and Molecular Characterization of a Novel Lytic Bacteriophage That Inactivates MDR Klebsiella pneumoniae Strains. Pharmaceutics 2022; 14:pharmaceutics14071421. [PMID: 35890314 PMCID: PMC9324672 DOI: 10.3390/pharmaceutics14071421] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
The worldwide increase in serious infections caused by multidrug-resistant (MDR) K. pneumoniae emphasizes the urgent need of new therapeutic strategies for the control of this pathogen. There is growing interest in the use of bacteriophages (or phages) to treat K. pneumoniae infections, and newly isolated phages are needed. Here, we report the isolation and physical/biological/molecular characterization of a novel lytic phage and its efficacy in the control of MDR K. pneumoniae. The phage vB_KpnS_Uniso31, referred to hereafter as phage Kpn31, was isolated from hospital wastewater using K. pneumoniae CCCD-K001 as the host. Phage Kpn31 presents a siphovirus-like morphotype and was classified as Demerecviridae; Sugarlandvirus based on its complete genome sequence. The 113,444 bp Kpn31 genome does not encode known toxins or antimicrobial resistance genes, nor does it encode depolymerases related sequences. Phage Kpn31 showed an eclipse time of 15 min and a burst size of 9.12 PFU/host cell, allowing us to conclude it replicates well in K. pneumoniae CCCD-K001 with a latency period of 30 min. Phage Kpn31 was shown to be effective against at least six MDR K. pneumoniae clinical isolates in in vitro antibacterial activity assays. Based on its features, phage Kpn31 has potential for controlling infections caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Victor M Balcão
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernanda C Moreli
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Erica C Silva
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Bianca G Belline
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Layla F Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernando P N Rossi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carla Pereira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta M D C Vila
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
25
|
Liu J, Zhu Y, Li Y, Lu Y, Xiong K, Zhong Q, Wang J. Bacteriophage-Resistant Mutant of Enterococcus faecalis Is Impaired in Biofilm Formation. Front Microbiol 2022; 13:913023. [PMID: 35756031 PMCID: PMC9218719 DOI: 10.3389/fmicb.2022.913023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is a common gram-positive non-spore-forming bacterium in nature and is found in the upper respiratory tract, intestine, and mouth of healthy people. E. faecalis is also one of the common pathogens causing nosocomial infections and is resistant to several antibiotics commonly used in practice. Thus, treating drug-resistant E. faecalis with antibiotics is challenging, and new approaches are needed. In this study, we isolated a bacteriophage named EFap02 that targets E. faecalis strain EFa02 from sewage at Southwest Hospital. Phage EFap02 belongs to the Siphoviridae family with a long tail of approximately 210 nm, and EFap02 can tolerate a strong acid and alkali environment and high temperature. Its receptor was identified as the capsular polysaccharide. Phage-resistant mutants had loss-of-function mutations in glycosyltransferase (gtr2), which is responsible for capsular polysaccharide biosynthesis, and this caused the loss of capsular polysaccharide and interruption of phage adsorption. Although phage-resistant mutants against EFap02 can be selected, such mutants are impaired in biofilm formation due to the loss of capsular polysaccharide, which compromises its virulence. Therefore, this study provided a detailed description of the E. faecalis EFap02 phage with the potential for treating E. faecalis infection.
Collapse
Affiliation(s)
- Jiazhen Liu
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanpeng Zhu
- Department of Microbiology, Army Medical University, Chongqing, China.,Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuwen Lu
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Xiong
- Department of Frigidzone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Klebsiella pneumonia and Its Antibiotic Resistance: A Bibliometric Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1668789. [PMID: 35707374 PMCID: PMC9192197 DOI: 10.1155/2022/1668789] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
The rapid development of antibiotic resistance in K. pneumonia has led to a major concern. In order to analyze the hotspots and develop trends in this field through visual the analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. A total of 9366 research articles were retrieved from the Web of Science Core Collection, and the number of published papers is increasing year by year. The country with the most articles was the USA, followed by China and India. The institution with the highest number of publications was LERU. The author with the highest number of articles was Li. The journal with the highest citation rate was Antimicrobial Agents and Chemotherapy. In addition, based on keyword coword analysis and cited literature prominence analysis by CiteSpace, the current research focus in the field was therapy, CRKP, and resistance genes. This paper provides a new quantitative visualization way for the development of the field in the recent ten years. The results show global trends that researchers can use to determine future directions.
Collapse
|
27
|
PhREEPred: Phage Resistance Emergence Prediction web to foresee encapsulated bacterial escape from phage cocktail treatment. J Mol Biol 2022; 434:167670. [PMID: 35671831 DOI: 10.1016/j.jmb.2022.167670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Phages, as well as phage-derived proteins, especially lysins and depolymerases, are intensively studied to become prospective alternatives or supportive antibacterials used alone or in combination. In the common phage therapy approach, the unwanted emergence of phage-resistant variants from the treated bacterial population can be postponed or reduced by the utilization of an effective phage cocktail. In this work, we present a publicly available web tool PhREEPred (Phage Resistance Emergence Prediction) (https://phartner.shinyapps.io/PhREEPred/), which will allow an informed choice of the composition of phage cocktails by predicting the outcome of phage cocktail or phage/depolymerase combination treatments given a mutating population that escapes single phage treatment. PhREEPred simulates solutions of our mathematical model calibrated and tested on the experimental Klebsiella pneumoniae setup and Klebsiella-specific lytic phages: K63 type-specific phage KP34 equipped with a capsule-degrading enzyme (KP34p57), capsule-independent myoviruses KP15 and KP27, and recombinant capsule depolymerase KP34p57. The model can calculate the phage-resistance emergence depending on the bacterial growth rate and initial density, the multiplicity of infection, phage latent period, its infectiveness and the cocktail composition, as well as initial depolymerase concentration and activity rate. This model reproduced the experimental results and showed that (i) the phage cocktail of parallelly infecting phages is less effective than the one composed of sequentially infecting phages; (ii) depolymerase can delay or prevent bacterial resistance by unveiling an alternative receptor for initially inactive phages. In our opinion, this customer-friendly web tool will allow for the primary design of the phage cocktail and phage-depolymerase combination effectiveness against encapsulated pathogens.
Collapse
|
28
|
Krawczyk B, Wysocka M, Michalik M, Gołębiewska J. Urinary Tract Infections Caused by K. pneumoniae in Kidney Transplant Recipients – Epidemiology, Virulence and Antibiotic Resistance. Front Cell Infect Microbiol 2022; 12:861374. [PMID: 35531341 PMCID: PMC9068989 DOI: 10.3389/fcimb.2022.861374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections are the most common complication in kidney transplant recipients, possibly resulting in the deterioration of a long-term kidney allograft function and an increased risk of recipient’s death. K. pneumoniae has emerged as one of the most prevalent etiologic agents in the context of recurrent urinary tract infections, especially with multidrug resistant strains. This paper discusses the epidemiology and risk factors associated with urinary tract infections in kidney transplant recipients, multi-drug resistance of K. pneumoniae (ESBL, KPC, NDM), treatment and pathogenesis of K. pneumoniae infections, and possible causes of recurrent UTIs. It also addresses the issue of colonization/becoming a carrier of K. pneumoniae in the gastrointestinal tract and asymptomatic bacteriuria in relation to a symptomatic UTI development and epidemiology.
Collapse
Affiliation(s)
- Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Beata Krawczyk,
| | - Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
29
|
Nazir A, Qi C, Shi N, Gao X, Feng Q, Qing H, Li F, Tong Y. Characterization and Genomic Analysis of a Novel Drexlervirial Bacteriophage IME268 with Lytic Activity Against Klebsiella pneumoniae. Infect Drug Resist 2022; 15:1533-1546. [PMID: 35414748 PMCID: PMC8994998 DOI: 10.2147/idr.s347110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Klebsiella pneumoniae, a multidrug resistant bacterium, that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. Methods and Results In this study, a novel bacteriophage IME268 was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization of this phage exhibited it belongs to the Webervirus genus, Drexlerviridae family. Phage IME268 possessed a double-stranded DNA genome composed of 49,552bp with a GC content of 50.5%. The phage genome encodes 77 open reading frames, out of 44 are hypothetical proteins while 33 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME268 has 95% identity with 87% query cover with other phages in NCBI database. Multiplicity of infection, one step growth curve and host range of phage were also measured. Conclusion According to findings, Phage IME268 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.
Collapse
Affiliation(s)
- Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, People’s Republic of China
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Chunling Qi
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Na Shi
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Xue Gao
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Qiang Feng
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
- Correspondence: Fei Li; Yigang Tong, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China, Email ;
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Chen X, Tang Q, Li X, Zheng X, Li P, Li M, Wu F, Xu Z, Lu R, Zhang W. Isolation, characterization, and genome analysis of bacteriophage P929 that could specifically lyase the KL19 capsular type of Klebsiella pneumoniae. Virus Res 2022; 314:198750. [DOI: 10.1016/j.virusres.2022.198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
|
31
|
Singh A, Singh AN, Rathor N, Chaudhry R, Singh SK, Nath G. Evaluation of Bacteriophage Cocktail on Septicemia Caused by Colistin-Resistant Klebsiella pneumoniae in Mice Model. Front Pharmacol 2022; 13:778676. [PMID: 35197852 PMCID: PMC8860340 DOI: 10.3389/fphar.2022.778676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Objective: The emergence of resistance against last-resort antibiotics, carbapenem and colistin, in Klebsiella pneumoniae has been reported across the globe. Bacteriophage therapy seems to be one of the most promising alternatives. This study aimed to optimize the quantity and frequency of bacteriophage cocktail dosage/s required to eradicate the Klebsiella pneumoniae bacteria in immunocompetent septicemic mice. Methods: The three most active phages ɸKpBHU4, ɸKpBHU7, and ɸKpBHU14 characterized by molecular and TEM analyses were in the form of cocktail and was given intraperitoneally to mice after inducing the septicemia mice model with a constant dose of 8 × 107 colony-forming unit/mouse (CFU/mouse) Klebsiella pneumoniae. After that, the efficacy of the phage cocktail was analyzed at different dosages, that is, in increasing, variable, constant, and repeated dosages. Furthermore, interleukin-6 and endotoxin levels were estimated with variable doses of phage cocktail. Results: We have elucidated that phage therapy is effective against the Klebsiella pneumoniae septicemia mice model and is a promising alternative to antibiotic treatments. Our work delineates that a single dose of phage cocktail with 1 × 105 plaque-forming unit/mouse (PFU/mouse) protects the mice from fatal outcomes at any stage of septicemia. However, a higher phage dosage of 1 × 1012 PFU/mice is fatal when given at the early hours of septicemia, while this high dose is not fatal at the later stages of septicemia. Moreover, multiple repeated dosages are required to eradicate the bacteria from peripheral blood. In addition, the IL-6 levels in the 1 × 105 PFU/mouse group remain lower, but in the 1 × 1012 PFU/mouse group remains high at all points, which were associated with fatal outcomes. Conclusion: Our study showed that the optimized relatively lower and multiple dosages of phage cocktails with the strict monitoring of vitals in clinical settings might cure septicemia caused by MDR bacteria with different severity of infection.
Collapse
Affiliation(s)
- Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
32
|
Hiraoka S, Sumida T, Hirai M, Toyoda A, Kawagucci S, Yokokawa T, Nunoura T. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res 2022; 50:1531-1550. [PMID: 35051998 PMCID: PMC8919816 DOI: 10.1093/nar/gkab1292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Tomomi Sumida
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of
Genetics, Mishima,
Shizuoka 411-8540,
Japan
| | - Shinsuke Kawagucci
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
- Marine Biodiversity and Environmental Assessment Research
Center (BioEnv), Research Institute for Global Change (RIGC), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| |
Collapse
|
33
|
Würstle S, Stender J, Hammerl JA, Vogele K, Rothe K, Willy C, Bugert JJ. Practical Assessment of an Interdisciplinary Bacteriophage Delivery Pipeline for Personalized Therapy of Gram-Negative Bacterial Infections. Pharmaceuticals (Basel) 2022; 15:186. [PMID: 35215298 PMCID: PMC8879309 DOI: 10.3390/ph15020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022] Open
Abstract
Despite numerous advances in personalized phage therapy, smooth logistics are challenging, particularly for multidrug-resistant Gram-negative bacterial infections requiring high numbers of specific lytic phages. We conducted this study to pave the way for efficient logistics for critically ill patients by (1) closely examining and improving a current pipeline under realistic conditions, (2) offering guidelines for each step, leading to safe and high-quality phage supplies, and (3) providing a tool to evaluate the pipeline's efficiency. Due to varying stipulations for quality and safety in different countries, we focused the pipeline on all steps up to a required phage product by a cell-free extract system. The first of three study runs included patients with respiratory bacterial infections from four intensive care units, and it revealed a cumulative time of up to 23 days. Ultimately, adjustment of specific set points of the vulnerable components of the pipeline, phage isolation, and titration increased the pipeline's efficiency by 15% and decreased the maximum required time to 13 days. We present a site-independent practical approach to establish and optimize pipelines for personalized phage delivery, the co-organization of pipeline components between different institutions, non-binding guidelines for every step, and an efficiency check for phage laboratories.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jana Stender
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Jens André Hammerl
- Unit Epidemiology, Zoonoses and Antimicrobial Resistances, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Kilian Vogele
- Physics of Synthetic Biological Systems-E14, Physics-Department and ZNN, Technical University Munich, 85748 Munich, Germany;
| | - Kathrin Rothe
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Christian Willy
- Trauma & Orthopaedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Bundeswehr (Military) Academic Hospital Berlin, 10115 Berlin, Germany;
| | | |
Collapse
|
34
|
Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 2022; 13:302. [PMID: 35042848 PMCID: PMC8766457 DOI: 10.1038/s41467-021-27656-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023] Open
Abstract
A 30-year-old bombing victim with a fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term (>700 days) antibiotic therapy is treated with a pre-adapted bacteriophage along with meropenem and colistin, followed by ceftazidime/avibactam. This salvage therapy results in objective clinical, microbiological and radiological improvement of the patient’s wounds and overall condition. In support, the bacteriophage and antibiotic combination is highly effective against the patient’s K. pneumoniae strain in vitro, in 7-day mature biofilms and in suspensions. In this case study of a patient with fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term antibiotic therapy, the authors use a combination therapy of pre-adapted bacteriophage and antibiotics resulting in clinical, microbiological and radiological improvement.
Collapse
|
35
|
Fang Q, Feng Y, McNally A, Zong Z. Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice. Commun Biol 2022; 5:48. [PMID: 35027665 PMCID: PMC8758719 DOI: 10.1038/s42003-022-03001-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe global health challenge. We isolate and characterize two previously unidentified lytic phages, P24 and P39, with large burst sizes active against ST11 KL64, a major CRKP lineage. P24 and P39 represent species of the genera Przondovirus (Studiervirinae subfamily) and Webervirus (Drexlerviridae family), respectively. P24 and P39 together restrain CRKP growth to nearly 8 h. Phage-resistant mutants exhibit reduced capsule production and decreased virulence. Modifications in mshA and wcaJ encoding capsule polysaccharide synthesis mediate P24 resistance whilst mutations in epsJ encoding exopolysaccharide synthesis cause P39 resistance. We test P24 alone and together with P39 for decolonizing CRKP using mouse intestinal colonization models. Bacterial load shed decrease significantly in mice treated with P24 and P39. In conclusion, we report the characterization of two previously unidentified lytic phages against CRKP, revealing phage resistance mechanisms and demonstrating the potential of lytic phages for intestinal decolonization. Fang et al. characterized two previously unidentified phage species that could inhibit growth and decrease virulence of carbapenem-resistant Klebsiella pneumoniae (CRKP). They also showed that CRKP develop phage resistance but could still be decolonized in a mouse intestinal colonization model, highlighting phage therapy as potential treatment against drug-resistant pathogens.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China.,Center for Pathogen Research, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China. .,Center for Pathogen Research, Sichuan University, Chengdu, China. .,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Isolation and Identification of a Wastewater Siphoviridae Bacteriophage Targeting Multidrug-resistant Klebsiella pneumoniae. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Based on the WHO, multidrug-resistant Klebsiella pneumoniae is a priority pathogen that causes opportunistic infections and is widely spread in the environment. Phage therapy is considered a natural, safe, and very efficient alternative to treat difficult-to-treat infections. Objectives: This study aimed to isolate highly virulent, lytic bacteriophages and evaluate their efficacy for lysing multidrug-resistant K. pneumoniae. Methods: Municipal wastewater samples were collected and filtered using 0.22 µm syringe filters and cultivated with log-phase cultures of K. pneumoniae using enrichment media. After 48 h of incubation, the cultures were centrifuged, and the resultant supernatant was filtered (0.22 µm). The detection of the phage was done using the spot assay with K. pneumoniae as the host. One-step growth kinetics and bacterial reduction tests were conducted to assess the growth kinetics of the isolated phage. The stability of the isolated phage was characterized by subjecting it to various temperature and pH conditions. The chemical stability of the K. pneumoniae phage was determined by exposing it to various organic compounds. A panel of 20 bacterial strains was tested using the spot assay, as well as double agar overlying assay, to determine the host range of the isolated phage. Results: Out of 40 wastewater samples tested, only one sample was tested positive for the K. pneumoniae phage (2.5%) that was lytic against the host strain. The K. pneumoniae phage had a latent period of 15 min and a burst size of 100 virions per infected cell. It was most stable at 37°C and pH range of 6.0 to 10.0. Chemically, the K. pneumoniae phage was resistant to 10% chloroform treatment. Transmission electron micrograph indicated that the K. pneumoniae phage belonged to the order Caudovirales, family Siphoviridae, morphotype B1. Conclusions: Most of the characteristic features of the K. pneumoniae phage indicated the potential of this phage to be used in phage therapy. Hence, a comprehensive study is highly recommended to characterize the K. pneumoniae phage genome, detect its molecular interactions with the host cell, and determine its lytic activity in combination with other phages, which may lead to the efficient utilization of this phage in phage therapy against K. pneumoniae infections.
Collapse
|
37
|
Torabi LR, Naghavi NS, Doudi M, Monajemi R. Efficacious antibacterial potency of novel bacteriophages against ESBL-producing Klebsiella pneumoniae isolated from burn wound infections. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:678-690. [PMID: 34900166 PMCID: PMC8629815 DOI: 10.18502/ijm.v13i5.7435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Prevalence of extended spectrum β-lactamase (ESBL) leads to the development of antibiotic resistance and mortality in burn patients. One of the alternative strategies for controlling ESBL bacterial infections is clinical trials of bacteriophage therapy. The aim of this study was to isolate and characterize specific bacteriophages against ESBL-producing Klebsiella pneumoniae in patients with burn ulcers. MATERIALS AND METHODS Clinical samples were isolated from the hospitalized patient in burn medical centers, Iran. Biochemical screenings and 16S rRNA gene sequencing were determined. The phages were isolated from municipal sewerage treatment plants, Isfahan, Iran. TEM and FESEM, adsorption velocity, growth curve, host range, and the viability of the phage particles as well as proteomics and enzyme digestion patterns were examined. RESULTS The results showed that Klebsiella pneumoniae Iaufa_lad2 (GenBank accession number: MW836954) was confirmed as an ESBL-producing strain using combined disk method. This bacterium showed significant sensitivity to three phages including PɸBw-Kp1, PɸBw-Kp2, and PɸBw-Kp3. Morphological characterization demonstrated that the phage PɸBw-Kp3 to the Siphoviridae family (lambda-like phages) and both phages PɸBw-Kp1 and ɸBw-Kp2 to the Podoviridae family (T1-like phages). The isolated bacteriophages had a large burst size, thermal and pH viability and efficient adsorption rate to the host cells. CONCLUSION In present study, the efficacy of bacteriophages against ESBL pathogenic bacterium promises a remarkable achievement for phage therapy. It seems that, these isolated bacteriophages, in the form of phage cocktails, had a strong antibacterial impacts and a broad-spectrum strategy against ESBL-producing Klebsiella pneumoniae isolated from burn ulcers.
Collapse
Affiliation(s)
| | - Nafiseh Sadat Naghavi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
38
|
Ku H, Kabwe M, Chan HT, Stanton C, Petrovski S, Batinovic S, Tucci J. Novel Drexlerviridae bacteriophage KMI8 with specific lytic activity against Klebsiella michiganensis and its biofilms. PLoS One 2021; 16:e0257102. [PMID: 34492081 PMCID: PMC8423285 DOI: 10.1371/journal.pone.0257102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
The bacterial genus Klebsiella includes the closely related species K. michiganensis, K. oxytoca and K. pneumoniae, which are capable of causing severe disease in humans. In this report we describe the isolation, genomic and functional characterisation of the lytic bacteriophage KMI8 specific for K. michiganensis. KMI8 belongs to the family Drexlerviridae, and has a novel genome which shares very little homology (71.89% identity over a query cover of only 8%) with that of its closest related bacteriophages (Klebsiella bacteriophage LF20 (MW417503.1); Klebsiella bacteriophage 066039 (MW042802.1). KMI8, which possess a putative endosialidase (depolymerase) enzyme, was shown to be capable of degrading mono-biofilms of a strain of K. michiganensis that carried the polysaccharide capsule KL70 locus. This is the first report of a lytic bacteriophage for K. michiganensis, which is capable of breaking down a biofilm of this species.
Collapse
Affiliation(s)
- Heng Ku
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Mwila Kabwe
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Victoria, Australia
| | - Cassandra Stanton
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
- * E-mail:
| |
Collapse
|
39
|
Pallavali RR, Degati VL, Narala VR, Velpula KK, Yenugu S, Durbaka VRP. Lytic Bacteriophages Against Bacterial Biofilms Formed by Multidrug-Resistant Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus Isolated from Burn Wounds. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:120-130. [PMID: 36161242 PMCID: PMC9041503 DOI: 10.1089/phage.2021.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Background: Use of bacteriophages as antibiofilm agents to tackle multidrug-resistant bacteria has gained importance in recent years. Materials and Methods: In this study, biofilm formation by Staphylococcus aureus, Pseudomona aeruginosa, Klebsiella pneumoniae, and Escherichia coli under different growth conditions was studied. Furthermore, the ability of bacteriophages to inhibit biofilm formation was analyzed. Results: Under dynamic growth condition, wherein the medium is renewed for every 12 h, the amount of biomass produced and log10 colony-forming unit counts of all bacterial species studied was highest when compared with other growth conditions tested. Biomass of biofilms produced was drastically reduced when incubated for 2 or 4 h with bacteriophages vB_SAnS_SADP1, vB_PAnP_PADP4, vB_KPnM_KPDP1, and vB_ECnM_ECDP3. Scanning electron microscopy and confocal laser scanning microscopy analyses indicated that the reduction in biomass was due to the lytic action of the bacteriophages. Conclusions: Results of our study reinforce the concept of developing bacteriophages as alternatives to antibiotics to treat bacterial infections.
Collapse
Affiliation(s)
| | | | | | - Kiran Kumar Velpula
- Department of Cancer Biology and Pharmacology (Peoria), University of Illinois, Chicago, Peoria, Illinois, USA
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
- Address correspondence to: Suresh Yenugu, PhD, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - Vijaya Raghava Prasad Durbaka
- Department of Microbiology, Yogi Vemana University, Kadapa, India
- Address correspondence to: Vijaya Raghava Prasad Durbaka, PhD, Department of Microbiology, Yogi Vemana University, Kadapa 516005, India
| |
Collapse
|
40
|
Fayez MS, Hakim TA, Agwa MM, Abdelmoteleb M, Aly RG, Montaser NN, Abdelsattar AS, Rezk N, El-Shibiny A. Topically Applied Bacteriophage to Control Multi-Drug Resistant Klebsiella pneumoniae Infected Wound in a Rat Model. Antibiotics (Basel) 2021; 10:antibiotics10091048. [PMID: 34572629 PMCID: PMC8470685 DOI: 10.3390/antibiotics10091048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
(Background): Multi-drug-resistant Klebsiella pneumoniae (MDR-KP) has steadily grown beyond antibiotic control. Wound infection kills many patients each year, due to the entry of multi-drug resistant (MDR) bacterial pathogens into the skin gaps. However, a bacteriophage (phage) is considered to be a potential antibiotic alternative for treating bacterial infections. This research aims at isolating and characterizing a specific phage and evaluate its topical activity against MDR-KP isolated from infected wounds. (Methods): A lytic phage ZCKP8 was isolated by using a clinical isolate KP/15 as a host strain then characterized. Additionally, phage was assessed for its in vitro host range, temperature, ultraviolet (UV), and pH sensitivity. The therapeutic efficiency of phage suspension and a phage-impeded gel vehicle were assessed in vivo against a K. pneumoniae infected wound on a rat model. (Result): The phage produced a clear plaque and was classified as Siphoviridae. The phage inhibited KP/15 growth in vitro in a dose-dependent pattern and it was found to resist high temperature (˂70 °C) and was primarily active at pH 5; moreover, it showed UV stability for 45 min. Phage-treated K. pneumoniae inoculated wounds showed the highest healing efficiency by lowering the infection. The quality of the regenerated skin was evidenced via histological examination compared to the untreated control group. (Conclusions): This research represents the evidence of effective phage therapy against MDR-KP.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Toka A. Hakim
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Rania G. Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Nada N. Montaser
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Center for X-ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
- Correspondence:
| |
Collapse
|
41
|
Abstract
Control of pathogenic bacteria by deliberate application of predatory phages has potential as a powerful therapy against antibiotic-resistant bacteria. The key advantages of phage biocontrol over antibacterial chemotherapy are: (1) an ability to self-propagate inside host bacteria, (2) targeted predation of specific species or strains of bacteria, (3) adaptive molecular machinery to overcome resistance in target bacteria. However, realizing the potential of phage biocontrol is dependent on harnessing or adapting these responses, as many phage species switch between lytic infection cycles (resulting in lysis) and lysogenic infection cycles (resulting in genomic integration) that increase the likelihood of survival of the phage in response to external stress or host depletion. Similarly, host range will need to be optimized to make phage therapy medically viable whilst avoiding the potential for deleteriously disturbing the commensal microbiota. Phage training is a new approach to produce efficient phages by capitalizing on the evolved response of wild-type phages to bacterial resistance. Here we will review recent studies reporting successful trials of training different strains of phages to switch into lytic replication mode, overcome bacterial resistance, and increase their host range. This review will also highlight the current knowledge of phage training and future implications in phage applications and phage therapy and summarize the recent pipeline of the magistral preparation to produce a customized phage for clinical trials and medical applications.
Collapse
|
42
|
Jończyk-Matysiak E, Owczarek B, Popiela E, Świtała-Jeleń K, Migdał P, Cieślik M, Łodej N, Kula D, Neuberg J, Hodyra-Stefaniak K, Kaszowska M, Orwat F, Bagińska N, Mucha A, Belter A, Skupińska M, Bubak B, Fortuna W, Letkiewicz S, Chorbiński P, Weber-Dąbrowska B, Roman A, Górski A. Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses 2021; 13:1217. [PMID: 34201873 PMCID: PMC8310151 DOI: 10.3390/v13071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Kinga Świtała-Jeleń
- Pure Biologics, Duńska Street 11, 54-427 Wroclaw, Poland; (K.Ś.-J.); (K.H.-S.)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | | | - Marta Kaszowska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 54-427 Wrocław, Poland;
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Anna Mucha
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wroclaw, Poland;
| | - Agnieszka Belter
- BioScientia, Ogrodowa Street 2/8, 61-820 Poznań, Poland; (A.B.); (M.S.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Barbara Bubak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wrocław Medical University, Borowska 213, 54-427 Wrocław, Poland;
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
- Department of Health Sciences, Jan Długosz University in Częstochowa, 12-200 Częstochowa, Poland
| | - Paweł Chorbiński
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland;
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
| | - Adam Roman
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
43
|
Eckstein S, Stender J, Mzoughi S, Vogele K, Kühn J, Friese D, Bugert C, Handrick S, Ferjani M, Wölfel R, Millard A, Ben Moussa M, Bugert JJ. Isolation and characterization of lytic phage TUN1 specific for Klebsiella pneumoniae K64 clinical isolates from Tunisia. BMC Microbiol 2021; 21:186. [PMID: 34154528 PMCID: PMC8215767 DOI: 10.1186/s12866-021-02251-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Multidrug-resistant Klebsiella pneumoniae spp. (kp) are emerging agents of severe infections of the respiratory, urinary tract and wounds that can progress to fatal septicemia. The use of bacteriophages is currently being considered as an effective alternative or adjuvant to antibiotic therapy. RESULTS In this study, we report capsule (K)-typing of 163 carbapenem-resistant Kp (CRKP) isolated 2014-2018 at the Military Hospital of Instruction of Tunis (MHT), Tunisia, by partial amplification and sequencing of the Kp wzi gene. The most prevalent K-type overall was K64 with 50.3% followed by K17 and K27 (22.7 and 11.0%, respectively). K64 Kp strains were most common and associated with increased case/fatality rates, especially at the intensive care unit (ICU). Using a K64 Kp strain we isolated and characterized a lytic Kp phage, vB_KpP_TUN1 (phage TUN1), from wastewater samples of the ICU at the MHT. TUN1 belongs to the Autographiviridae family and specifically digests K64 Kp capsules most probably via a depolymerase encoded by gp47. Furthermore, we successfully assembled phage TUN1 in a non-replicative host (E. coli) raising the possibility of in vitro assembly in the absence of live bacterial hosts. We propose that phage TUN1 is a promising candidate to be used as an adjuvant or an alternative to antibiotic therapy in CRKP infections, facilitating regulatory approval of phage therapy. CONCLUSIONS K64, K17 and K27 are the most common wzi capsule types in this geographical location in Northern Africa. The lytic phage TUN1 efficiently lyses K64 Kp strains associated with increased case/fatality rates at body temperature. Together with its ability to be rescued in a non-replicative host these features enhance the utility of this phage as an antibacterial agent.
Collapse
Affiliation(s)
| | - Jana Stender
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Sonia Mzoughi
- Department of Virology, Military Hospital of Instruction of Tunis, Tunis, Tunisia
- Faculty of Pharmacy, Monastir, Tunisia
| | - Kilian Vogele
- Department of Physics, Technical University of Munich, Garching, Germany
| | - Jana Kühn
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | | - Mustapha Ferjani
- Department of Anesthesiology and Reanimation, Military Hospital of Instruction of Tunis, Tunis, Tunisia
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mohamed Ben Moussa
- Department of Virology, Military Hospital of Instruction of Tunis, Tunis, Tunisia
| | | |
Collapse
|
44
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
45
|
Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol 2021; 23:7723-7740. [PMID: 33754440 DOI: 10.1111/1462-2920.15476] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Bacteriophage therapy is currently being evaluated as a critical complement to traditional antibiotic treatment. However, the emergence of phage resistance is perceived as a major hurdle to the sustainable implementation of this antimicrobial strategy. By combining comprehensive genomics and microbiological assessment, we show that the receptor-modification resistance to capsule-targeting phages involves either escape mutation(s) in the capsule biosynthesis cluster or qualitative changes in exopolysaccharides, converting clones to mucoid variants. These variants introduce cross-resistance to phages specific to the same receptor yet sensitize to phages utilizing alternative ones. The loss/modification of capsule, the main Klebsiella pneumoniae virulence factor, did not dramatically impact population fitness, nor the ability to protect bacteria against the innate immune response. Nevertheless, the introduction of phage drives bacteria to expel multidrug resistance clusters, as observed by the large deletion in K. pneumoniae 77 plasmid containing blaCTX-M , ant(3″), sul2, folA, mph(E)/mph(G) genes. The emerging bacterial resistance to viral infection steers evolution towards desired population attributes and highlights the synergistic potential for combined antibiotic-phage therapy against K. pneumoniae.
Collapse
Affiliation(s)
- Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Pawel Markwitz
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Ewelina Sosnowska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium.,Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
46
|
Isolation and Characterization of a Novel Lytic Bacteriophage against the K2 Capsule-Expressing Hypervirulent Klebsiella pneumoniae Strain 52145, and Identification of Its Functional Depolymerase. Microorganisms 2021; 9:microorganisms9030650. [PMID: 33801047 PMCID: PMC8003838 DOI: 10.3390/microorganisms9030650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, can evoke the lysis of bacterial cells, aided by polysaccharide depolymerase enzymes. In this study, we isolated and characterized a bacteriophage against the nosocomial K. pneumoniae 52145 strain with K2 capsular serotype. The phage showed a narrow host range and stable lytic activity, even when exposed to different temperatures or detergents. Preventive effect of the phage in a nasal colonization model was investigated in vivo. Phlyogenetic analysis showed that the newly isolated Klebsiella phage B1 belongs to the Webervirus genus in Drexlerviridae family. We identified the location of the capsule depolymerase gene of the new phage, which was amplified, cloned, expressed, and purified. The efficacy of the recombinant B1dep depolymerase was tested by spotting on K. pneumoniae strains and it was confirmed that the extract lowers the thickness of the bacterium lawn as it degrades the protective capsule on bacterial cells. As K. pneumoniae strains possessing the K2 serotype have epidemiological importance, the B1 phage and its depolymerase are promising candidates for use as possible antimicrobial agents.
Collapse
|
47
|
Isolation and Characterization of Two Virulent Phages to Combat Staphylococcus aureus and Enterococcus faecalis causing Dental Caries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to isolate and characterize bacteriophages, as a biocontrol agent, against certain antibiotic-resistant bacteria causing dental caries. Here, two dental caries-causing bacteria S. aureus and E. faecalis were isolated and characterized biochemically using the automated VITEK® 2 system. Antibiotic sensitivity pattern of the isolated dental caries bacteria was assessed against selection of antibiotics. The two isolates showed resistance against most of the tested antibiotics. To overcome this problem, two lytic phages vB_SauM-EG-AE3 and vB_EfaP-EF01 were isolated, identified, and applied to control the growth of S. aureus and E. faecalis, respectively. Phages were identified morphologically using TEM and showed that vB_SauM-EG-AE3 phage is related to Myoviridae and vB_EfaP-EF01 phage belongs to Podoviridae. The two phages exhibited high lytic activity, high stability, and a narrow host range. The one-step growth curve of phages showed burst sizes of 78.87 and 113.55 PFU/cell with latent periods of 25 and 30 minutes for S. aureus phage and E. faecalis phage respectively. In addition, the two phages showed different structural protein profiles and exhibited different patterns using different restriction enzymes. The genome sizes were estimated to be 13.30 Kb and 15.60 Kb for phages vB_SauM-EGAE3, vB_EfaP-EGAE1, respectively. Complete inhibition of bacterial growth was achieved using phages with MOIs of 103, 102 and 10 after 1, 3, 5, and 24 h of incubation at 37°C. Hence, this study indicates that the isolated bacteriophages are promising biocontrol agents that could challenge antibiotic-resistant dental caries bacteria to announce new successful alternatives to antibiotics.
Collapse
|
48
|
Askoura M, Saed N, Enan G, Askora A. Characterization of Polyvalent Bacteriophages Targeting Multidrug-Resistant Klebsiella pneumonia with Enhanced Anti-Biofilm Activity. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382101004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Sundaramoorthy NS, Thothathri S, Bhaskaran M, GaneshPrasad A, Nagarajan S. Phages from Ganges River curtail in vitro biofilms and planktonic growth of drug resistant Klebsiella pneumoniae in a zebrafish infection model. AMB Express 2021; 11:27. [PMID: 33587215 PMCID: PMC7884498 DOI: 10.1186/s13568-021-01181-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are a promising alternative for curtailing infections caused by multi drug resistant (MDR) bacteria. The objective of the present study is to evaluate phage populations from water bodies to inhibit planktonic and biofilm mode of growth of drug resistant Klebsiella pneumoniae in vitro and curtail planktonic growth in vivo in a zebrafish model. Phage specific to K. pneumoniae (MTCC 432) was isolated from Ganges River (designated as KpG). One-step growth curve, in vitro time kill curve study and in vivo infection model were performed to evaluate the ability of phage to curtail planktonic growth. Crystal violet assay and colony biofilm assay were performed to determine the action of phages on biofilms. KpG phages had a greater burst size, better bactericidal potential and enhanced inhibitory effect against biofilms formed at liquid air and solid air interfaces. In vitro time kill assay showed a 3 log decline and a 6 log decline in K. pneumoniae colony counts, when phages were administered individually and in combination with streptomycin, respectively. In vivo injection of KpG phages revealed that it did not pose any toxicity to zebrafish as evidenced by liver/brain enzyme profiles and by histopathological analysis. The muscle tissue of zebrafish, infected with K. pneumoniae and treated with KpG phages alone and in combination with streptomycin showed a significant 77.7% and 97.2% decline in CFU/ml, respectively, relative to untreated control. Our study reveals that KpG phages has the potential to curtail plantonic and biofilm mode of growth in higher animal models.
Collapse
|
50
|
Zurabov F, Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J 2021; 18:9. [PMID: 33407669 PMCID: PMC7789013 DOI: 10.1186/s12985-020-01485-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates. Methods This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence. Results Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules. Conclusions The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center "MicroMir", LLC, Moscow, Russia. .,Department of Virology, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|