Role of an RNA pseudoknot involving the polyA tail in replication of Pepino mosaic potexvirus and related plant viruses.
Sci Rep 2022;
12:11532. [PMID:
35798958 PMCID:
PMC9262919 DOI:
10.1038/s41598-022-15598-5]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023] Open
Abstract
Pepino mosaic virus (PepMV) is a potexvirus of the family Alphaflexiviridae within the order of Tymovirales that threatens tomato production worldwide. PepMV possesses a positive-strand RNA genome with a 5′-methylguanosine cap and a 3′-polyA tail. Previously, using partially-purified viral RNA polymerase important secondary structures within the 3′-untranslated region (UTR) of PepMV RNA were identified. Here we show that an RNA pseudoknot can be formed in the 3′-UTR that includes part of the polyA tail. Using protoplasts, we demonstrate that the pseudoknot is required for replication of PepMV RNA. Mutational analysis and native gel electrophoresis further show that the pseudoknot is stabilized by UAU base triples, as is the human telomerase RNA pseudoknot. The presence of a pseudoknot in several other members of the Alpha- and Betaflexiviridae is supported by covariance analysis and native gel electrophoresis of other potexvirus, capillovirus and trichovirus RNAs. The ubiquitous presence of the pseudoknot in viruses of the Betaflexiviridae, suggests that the pseudoknot is a typical trait of the Betaflexiviridae that may have been adopted by many potexviruses during evolution.
Collapse