1
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2023:1-18. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Objective: This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia.Methods: The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed.Results and Conclusions: This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
2
|
Kang H, Cong J, Wang C, Ji W, Xin Y, Qian Y, Li X, Chen Y, Rao Z. Structural basis for recognition and regulation of arenavirus polymerase L by Z protein. Nat Commun 2021; 12:4134. [PMID: 34226547 PMCID: PMC8257661 DOI: 10.1038/s41467-021-24458-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Junin virus (JUNV) causes Argentine hemorrhagic fever, a debilitating human disease of high mortality rates and a great risk to public health worldwide. Studying the L protein that replicates and transcribes the genome of JUNV, and its regulator Z protein should provide critical clues to identify therapeutic targets for disrupting the life cycle of JUNV. Here we report the 3.54 Å cryo-EM structure of the JUNV L protein complexed with regulator Z protein. JUNV L structure reveals a conserved architecture containing signature motifs found in other L proteins. Structural analysis shows that L protein is regulated by binding of Z protein at the RNA product exit site. Based on these findings, we propose a model for the role of Z protein as a switch to turn on/off the viral RNA synthesis via its interaction with L protein. Our work unveils the mechanism of JUNV transcription, replication and regulation, which provides a framework for the rational design of antivirals for combating viral infections. Junin virus (JUNV) causes Argentine hemorrhagic fever and encodes the large protein (L) of the RNA dependent RNA polymerase (RdRp) and its regulator, the matrix zinc-binding protein (Z). Here, the authors present the 3.54 Å cryo-EM structure of the complex of JUNV L with Z, and they propose a model of how JUNV L is regulated by Z during the viral life cycle and RNA synthesis.
Collapse
Affiliation(s)
- Huiling Kang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenlong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenxin Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Alonso R, Ruiz M, Lovera R, Montes De Oca D, Cavia R, Sánchez J. Norway rat (Rattus norvegicus) ectoparasites in livestock production systems from central Argentina: Influencing factors on parasitism. Acta Trop 2020; 203:105299. [PMID: 31837978 DOI: 10.1016/j.actatropica.2019.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/15/2023]
Abstract
Haematophagous ectoparasites are worldwide vectors of many zoonotic bacterial diseases, both emerging and re-emerging, whose incidences are rising. Livestock development alters different environmental characteristics such as the microclimate of a site, changing the availability, density and susceptibility of the hosts to pathogens and vectors, indirectly influencing the spread and persistence of a disease within an ecosystem. The Norway rat (Rattus norvegicus), the most abundant vertebrate pest species found on livestock farms from Argentina, is a reservoir for several important zoonotic bacteria and may harbor ectoparasite species, which act as their vectors. Even though the Norway rat is widely known for its role as an ectoparasite host, the ecological characteristics of their ectoparasite communities and the related factors with parasitism on livestock farms have never been described. In the present study, we describe the ectoparasite community in Norway rats from central Argentina livestock farms, while also depicting the influencing factors on both ectoparasite occurrence and abundance. Ectoparasites were collected from rats captured in 20 sites from Buenos Aires province, between the winter of 2016 and the summer of 2018. A total of 1441 ectoparasite individuals were collected from 159 Norway rat individuals [Total ectoparasite prevalence = 69.2%; Mean ectoparasite specimen abundance (± CI) = 9.06 ± 2.32 ectoparasite individuals per rat; Mean ectoparasite specimen intensity (±CI) = 13.10 ± 3.08 ectoparasite individuals per infested rat found]. Ectoparasite assemblage consisted of four cosmopolitan species, recognized for their sanitary relevance: mites (Laelapidae: Laelaps nuttalli and Laelaps echidninus), lice (Polyplacidae: Polyplax spinulosa) and fleas (Pulicidae: Xenopsylla cheopis). We observed higher Norway rat abundance in sites related to higher ectoparasite occurrence and abundance frequencies on the rats. Additionally, ectoparasites were more abundant on rats in warm seasons and on male individuals, over female rats. Moreover, the geographical location of the studied sites influenced the ectoparasite assemblage structure observed on the rats. This study broadens the knowledge on the role of Norway rats as zoonotic ectoparasites hosts and analyzes the drivers influencing ectoparasite occurrence and abundance on the most populated region of Argentina, which is also the region with the most intensive livestock farming. Therefore, this survey may assist in evaluating potential risks for humans and generate effective sanitary control strategies for ectoparasite-borne infectious diseases.
Collapse
|
4
|
Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron É, Keck JG, Zaki SR, Nichol ST, Spiropoulou CF. Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. J Infect Dis 2017; 216:1386-1397. [PMID: 28482001 PMCID: PMC5853341 DOI: 10.1093/infdis/jix215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - M Kelly Keating
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anita K McElroy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
- Division of Pediatric Infectious Diseases, Emory University, Atlanta, Georgia
| | - Marko Zivcec
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Éric Bergeron
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James G Keck
- In Vivo Services, The Jackson Laboratory, Sacramento, California
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
5
|
Lindqvist R, Mundt F, Gilthorpe JD, Wölfel S, Gekara NO, Kröger A, Överby AK. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J Neuroinflammation 2016; 13:277. [PMID: 27776548 PMCID: PMC5078952 DOI: 10.1186/s12974-016-0748-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Neurotropic flaviviruses such as tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) are causative agents of severe brain-related diseases including meningitis, encephalitis, and microcephaly. We have previously shown that local type I interferon response within the central nervous system (CNS) is involved in the protection of mice against tick-borne flavivirus infection. However, the cells responsible for mounting this protective response are not defined. Methods Primary astrocytes were isolated from wild-type (WT) and interferon alpha receptor knock out (IFNAR−/−) mice and infected with neurotropic flaviviruses. Viral replication and spread, IFN induction and response, and cellular viability were analyzed. Transcriptional levels in primary astrocytes treated with interferon or supernatant from virus-infected cells were analyzed by RNA sequencing and evaluated by different bioinformatics tools. Results Here, we show that astrocytes control viral replication of different TBEV strains, JEV, WNV, and ZIKV. In contrast to fibroblast, astrocytes mount a rapid interferon response and restrict viral spread. Furthermore, basal expression levels of key interferon-stimulated genes are high in astrocytes compared to mouse embryonic fibroblasts. Bioinformatic analysis of RNA-sequencing data reveals that astrocytes have established a basal antiviral state which contributes to the rapid viral recognition and upregulation of interferons. The most highly upregulated pathways in neighboring cells were linked to type I interferon response and innate immunity. The restriction in viral growth was dependent on interferon signaling, since loss of the interferon receptor, or its blockade in wild-type cells, resulted in high viral replication and virus-induced cytopathic effects. Astrocyte supernatant from TBEV-infected cells can restrict TBEV growth in astrocytes already 6 h post infection, the effect on neurons is highly reinforced, and astrocyte supernatant from 3 h post infection is already protective. Conclusions These findings suggest that the combination of an intrinsic constitutive antiviral response and the fast induction of type I IFN production by astrocytes play an important role in self-protection of astrocytes and suppression of flavivirus replication in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0748-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), 90187, Umeå, Sweden
| | - Filip Mundt
- The Broad Institute of MIT and Harvard, Proteomics and Biomarkers, 415 Main Street, #5033-A, Cambridge, MA, 02142, USA
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Silke Wölfel
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Nelson O Gekara
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Inhoffen Str 7, 38124, Braunschweig, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), 90187, Umeå, Sweden.
| |
Collapse
|
6
|
Wilson CL, Hayward SL, Kidambi S. Astrogliosis in a dish: substrate stiffness induces astrogliosis in primary rat astrocytes. RSC Adv 2016; 6:34447-34457. [PMID: 32742641 PMCID: PMC7394306 DOI: 10.1039/c5ra25916a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrogliosis due to brain injury or disease can lead to varying molecular and morphological changes in astrocytes. Magnetic resonance elastography and ultrasound have demonstrated that brain stiffness varies with age and disease state. However, there is a lack in understanding the role of varied stiffness on the progression of astrogliosis highlighting a critical need to engineer in vitro models that mimic disease stages. Such models need to incorporate the dynamic changes in the brain microenvironment including the stiffness changes. In this study we developed a polydimethyl siloxane (PDMS) based platform that modeled the physiologically relevant stiffness of brain in both a healthy (200 Pa) and diseased (8000 Pa) state to investigate the effect of stiffness on astrocyte function. We observed that astrocytes grown on soft substrates displayed a consistently more quiescent phenotype while those on stiff substrates displayed an astrogliosis-like morphology. In addition to morphological changes, astrocytes cultured on stiff substrates demonstrated significant increase in other astrogliosis hallmarks - cellular proliferation and glial fibrillary acidic protein (GFAP) protein expression. Furthermore, culturing astrocytes on a stiff surface resulted in increased reactive oxygen species (ROS) production, increased super oxide dismutase activity and decreased glutamate uptake. Our platform lends itself for study of potential therapeutic strategies for brain injury focusing on the intricate brain microenvironment-astrocytes signaling pathways.
Collapse
Affiliation(s)
- Christina L Wilson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
| | - Stephen L Hayward
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16 St, Lincoln, NE, 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, 316C Leverton Hall, 1700 35 Street, NE, 68583, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, 42nd and Emile Street, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|