1
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
2
|
Logan SR, Vilaça ST, Bienentreu JF, Schock DM, Lesbarrères D, Brunetti CR. Isolation and Characterization of a Frog Virus 3 Strain from a Wood Frog ( Rana sylvatica) in Wood Buffalo National Park. Viruses 2024; 16:1411. [PMID: 39339887 PMCID: PMC11436234 DOI: 10.3390/v16091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Members of the Iridoviridae family, genus Ranavirus, represent a group of globally emerging pathogens of ecological and economic importance. In 2017, an amphibian die-off of wood frogs (Rana sylvatica) and boreal chorus frogs (Pseudacris maculata) was reported in Wood Buffalo National Park, Canada. Isolation and complete genomic sequencing of the tissues of a wood frog revealed the presence of a frog virus 3 (FV3)-like isolate, Rana sylvatica ranavirus (RSR), with a genome size of 105,895 base pairs, 97 predicted open reading frames (ORFs) bearing sequence similarity to FV3 (99.98%) and a FV3-like isolate from a spotted salamander in Maine (SSME; 99.64%). Despite high sequence similarity, RSR had a unique genomic composition containing ORFs specific to either FV3 or SSME. In addition, RSR had a unique 13 amino acid insertion in ORF 49/50L. No differences were found in the in vitro growth kinetics of FV3, SSME, and RSR; however, genomic differences between these isolates were in non-core genes, implicated in nucleic acid metabolism and immune evasion. This study highlights the importance of viral isolation and complete genomic analysis as these not only provide information on ranavirus spatial distribution but may elucidate genomic factors contributing to host tropism and pathogenicity.
Collapse
Affiliation(s)
- Samantha R Logan
- Department of Biology, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada
| | - Sibelle Torres Vilaça
- Environmental Genomics, Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém 66055-090, PA, Brazil
| | - Joe-Felix Bienentreu
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| | | | - David Lesbarrères
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
- Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Craig R Brunetti
- Department of Biology, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
3
|
Rácz R, Gellért Á, Papp T, Doszpoly A. Exploring the Effectiveness of Acyclovir against Ranaviral Thymidine Kinases: Molecular Docking and Experimental Validation in a Fish Cell Line. Life (Basel) 2024; 14:1050. [PMID: 39337837 PMCID: PMC11433535 DOI: 10.3390/life14091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The effectiveness of acyclovir, a selective anti-herpesvirus agent, was tested both in silico and in vitro against two ranaviruses, namely the European catfish virus (ECV) and Frog virus 3 (FV3). ECV can cause significant losses in catfish aquaculture, while FV3 poses a risk to vulnerable amphibian populations. The genome of ranaviruses encodes thymidine kinases (TKs) similar to those of herpesviruses. Molecular docking simulations demonstrated that the acyclovir molecule can bind to the active sites of both investigated viral TKs in an orientation conducive to phosphorylation. Subsequently, the antiviral effect of acyclovir was tested in vitro in Epithelioma Papulosum Cyprini (EPC) cells with endpoint titration and qPCR. Acyclovir was used at a concentration of 800 µM, which significantly reduced the viral loads and titers of the ranaviruses. A similar reduction rate was observed with Ictalurid herpesvirus 2, which was used as a positive control virus. These promising results indicate that acyclovir might have a wider range of uses; besides its effectiveness against herpesviruses, it could also be used against ranavirus infections.
Collapse
Affiliation(s)
| | | | | | - Andor Doszpoly
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary; (R.R.); (Á.G.); (T.P.)
| |
Collapse
|
4
|
Kim J, Sung HW, Jung TS, Park J, Park D. First Report of Endemic Frog Virus 3 (FV3)-like Ranaviruses in the Korean Clawed Salamander ( Onychodactylus koreanus) in Asia. Viruses 2024; 16:675. [PMID: 38793557 PMCID: PMC11125952 DOI: 10.3390/v16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Frog virus 3 (FV3) in the genus Ranavirus of the family Iridoviridae causes mass mortality in both anurans and urodeles worldwide; however, the phylogenetic origin of FV3-like ranaviruses is not well established. In Asia, three FV3-like ranaviruses have been reported in farmed populations of amphibians and reptiles. Here, we report the first case of endemic FV3-like ranavirus infections in the Korean clawed salamander Onychodactylus koreanus, caught in wild mountain streams in the Republic of Korea (ROK), through whole-genome sequencing and phylogenetic analysis. Two isolated FV3-like ranaviruses (Onychodactylus koreanus ranavirus, OKRV1 and 2) showed high similarity with the Rana grylio virus (RGV, 91.5%) and Rana nigromaculata ranavirus (RNRV, 92.2%) but relatively low similarity with the soft-shelled turtle iridovirus (STIV, 84.2%) in open reading frame (ORF) comparisons. OKRV1 and 2 formed a monophyletic clade with previously known Asian FV3-like ranaviruses, a sister group of the New World FV3-like ranavirus clade. Our results suggest that OKRV1 and 2 are FV3-like ranaviruses endemic to the ROK, and RGV and RNRV might also be endemic strains in China, unlike previous speculation. Our data have great implications for the study of the phylogeny and spreading routes of FV3-like ranaviruses and suggest the need for additional detection and analysis of FV3-like ranaviruses in wild populations in Asian countries.
Collapse
Affiliation(s)
- Jongsun Kim
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.K.); (J.P.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Tae Sung Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jaejin Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.K.); (J.P.)
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.K.); (J.P.)
| |
Collapse
|
5
|
Apakupakul K, Duncan M, Subramaniam K, Brenn-White M, Palmer JL, Viadanna PHO, Vann JA, Adamovicz L, Waltzek TB, Deem SL. Ranavirus (Frog Virus 3) Infection in Free-Living Three-Toed Box Turtles (Terrapene mexicana triunguis) in Missouri, USA. J Wildl Dis 2024; 60:151-163. [PMID: 37921651 DOI: 10.7589/jwd-d-23-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 11/04/2023]
Abstract
Frog virus 3 (FV3) and related ranaviruses are emerging infectious disease threats to ectothermic vertebrate species globally. Although the impact of these viruses on amphibian health is relatively well studied, less is understood about their effects on reptile health. We report two cases of FV3 infection, 11 mo apart, in three-toed box turtles (Terrapene mexicana triunguis) from a wildlife rehabilitation center. Case 1 had upper respiratory signs upon intake but had no clinical signs at the time of euthanasia 1 mo later. Case 2 presented for vehicular trauma, had ulcerative pharyngitis and glossitis, and died overnight. In case 1, we detected FV3 nucleic acid with qPCR in oral swabs, kidney, liver, spleen, and tongue. In case 2, we detected FV3 in an oral swab, an oral plaque, heart, kidney, lung, liver, spleen, and tongue. We also detected FV3 nucleic acid with in situ hybridization for case 2. For both cases, FV3 was isolated in cell culture and identified with DNA sequencing. Histopathologic examination of postmortem tissue from case 1 was unremarkable, whereas acute hemorrhagic pneumonia and splenic necrosis were noted in case 2. The difference in clinical signs between the two cases may have been due to differences in the temporal course of FV3 disease at the time of necropsy. Failure to detect this infection previously in Missouri reptiles may be due to lack of surveillance, although cases may also represent a novel spillover to box turtles in Missouri. Our findings reiterate previous suggestions that the range of FV3 infection may be greater than previously documented and that infection may occur in host species yet to be tested.
Collapse
Affiliation(s)
- Kathleen Apakupakul
- Saint Louis Zoo Institute for Conservation Medicine, 1 Government Dr., St. Louis, Missouri 63110, USA
| | - Mary Duncan
- Saint Louis Zoo Department of Animal Health, 1 Government Dr., St. Louis, Missouri 63110, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Rd., Bldg. 0471, Gainesville, Florida 32611, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, Florida 32610, USA
| | - Maris Brenn-White
- Saint Louis Zoo Institute for Conservation Medicine, 1 Government Dr., St. Louis, Missouri 63110, USA
| | - Jamie L Palmer
- Saint Louis Zoo Institute for Conservation Medicine, 1 Government Dr., St. Louis, Missouri 63110, USA
| | - Pedro H O Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Rd., Bldg. 0471, Gainesville, Florida 32611, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, Florida 32610, USA
| | - Jordan A Vann
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Rd., Bldg. 0471, Gainesville, Florida 32611, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, Florida 32610, USA
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, 2001 S. Lincoln Ave., Urbana, Illinois 61802, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Rd., Bldg. 0471, Gainesville, Florida 32611, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, Florida 32610, USA
- Current affiliation: Washington Animal Disease Diagnostic Laboratory and Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647034, Pullman, Washington, USA
| | - Sharon L Deem
- Saint Louis Zoo Institute for Conservation Medicine, 1 Government Dr., St. Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Lei Z, Lian L, Zhang L, Liu C, Zhai S, Yuan X, Wei J, Liu H, Liu Y, Du Z, Gul I, Zhang H, Qin Z, Zeng S, Jia P, Du K, Deng L, Yu D, He Q, Qin P. Detection of Frog Virus 3 by Integrating RPA-CRISPR/Cas12a-SPM with Deep Learning. ACS OMEGA 2023; 8:32555-32564. [PMID: 37720737 PMCID: PMC10500685 DOI: 10.1021/acsomega.3c02929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A fast, easy-to-implement, highly sensitive, and point-of-care (POC) detection system for frog virus 3 (FV3) is proposed. Combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a, a limit of detection (LoD) of 100 aM (60.2 copies/μL) is achieved by optimizing RPA primers and CRISPR RNAs (crRNAs). For POC detection, smartphone microscopy is implemented, and an LoD of 10 aM is achieved in 40 min. The proposed system detects four positive animal-derived samples with a quantitation cycle (Cq) value of quantitative PCR (qPCR) in the range of 13 to 32. In addition, deep learning models are deployed for binary classification (positive or negative samples) and multiclass classification (different concentrations of FV3 and negative samples), achieving 100 and 98.75% accuracy, respectively. Without temperature regulation and expensive equipment, the proposed RPA-CRISPR/Cas12a combined with smartphone readouts and artificial-intelligence-assisted classification showcases the great potential for FV3 detection, specifically POC detection of DNA virus.
Collapse
Affiliation(s)
- Zhengyang Lei
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Lijin Lian
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Likun Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Changyue Liu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Jiazhang Wei
- Department
of Otolaryngology & Head and Neck, The
People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi
Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Hong Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Ying Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Zhicheng Du
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Ijaz Gul
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Haihui Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Zhifeng Qin
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Shaoling Zeng
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Peng Jia
- Quality and
Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Ke Du
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Lin Deng
- Shenzhen
Bay Laboratory, Shenzhen 518132, China
| | - Dongmei Yu
- School
of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
7
|
Peñafiel-Ricaurte A, Price SJ, Leung WTM, Alvarado-Rybak M, Espinoza-Zambrano A, Valdivia C, Cunningham AA, Azat C. Is Xenopus laevis introduction linked with Ranavirus incursion, persistence and spread in Chile? PeerJ 2023; 11:e14497. [PMID: 36874973 PMCID: PMC9979829 DOI: 10.7717/peerj.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/10/2022] [Indexed: 03/03/2023] Open
Abstract
Ranaviruses have been associated with amphibian, fish and reptile mortality events worldwide and with amphibian population declines in parts of Europe. Xenopus laevis is a widespread invasive amphibian species in Chile. Recently, Frog virus 3 (FV3), the type species of the Ranavirus genus, was detected in two wild populations of this frog near Santiago in Chile, however, the extent of ranavirus infection in this country remains unknown. To obtain more information about the origin of ranavirus in Chile, its distribution, species affected, and the role of invasive amphibians and freshwater fish in the epidemiology of ranavirus, a surveillance study comprising wild and farmed amphibians and wild fish over a large latitudinal gradient (2,500 km) was carried out in 2015-2017. In total, 1,752 amphibians and 496 fish were tested using a ranavirus-specific qPCR assay, and positive samples were analyzed for virus characterization through whole genome sequencing of viral DNA obtained from infected tissue. Ranavirus was detected at low viral loads in nine of 1,011 X. laevis from four populations in central Chile. No other amphibian or fish species tested were positive for ranavirus, suggesting ranavirus is not threatening native Chilean species yet. Phylogenetic analysis of partial ranavirus sequences showed 100% similarity with FV3. Our results show a restricted range of ranavirus infection in central Chile, coinciding with X. laevis presence, and suggest that FV3 may have entered the country through infected X. laevis, which appears to act as a competent reservoir host, and may contribute to the spread the virus locally as it invades new areas, and globally through the pet trade.
Collapse
Affiliation(s)
- Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Mario Alvarado-Rybak
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom.,Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Andrés Espinoza-Zambrano
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| | | | - Claudio Azat
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
8
|
FATAL RANAVIRUS INFECTION IN A GROUP OF ZOO-HOUSED MELLER'S CHAMELEONS ( TRIOCEROS MELLERI). J Zoo Wildl Med 2021; 50:696-705. [PMID: 33517641 DOI: 10.1638/2018-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2019] [Indexed: 11/21/2022] Open
Abstract
A group of five juvenile Meller's chameleons (Trioceros melleri) experienced 100% mortality over a period of 1 mo due to ranavirus infection. The index case was found dead without premonitory signs. The three subsequent cases presented with nonspecific clinical signs (lethargy, decreased appetite, ocular discharge) and were ultimately euthanatized. The final case died after initially presenting with skin lesions. Postmortem examination revealed thin body condition in all five animals and mild coelomic effusion and petechiae affecting the tongue and kidneys of one animal. Microscopically, all animals had multifocal necrosis of the spleen, liver, and kidney; four of five animals had necrosis of the nasal cavity; and two of five had necrosis of adrenal tissue, bone marrow, and skin. Numerous basophilic intracytoplasmic inclusions were present in the liver of all animals and nasal mucosa of three of the five animals. Consensus polymerase chain reaction for herpesvirus and adenovirus were negative, whereas ranavirus quantitative polymerase chain reaction was positive. Virus isolation followed by whole genome sequencing and Bayesian phylogenetic analysis classified the isolates as a strain of frog virus 3 (FV3) most closely related to an FV3 isolate responsible for a previous outbreak in the zoo's eastern box turtle (Terrapene carolina carolina) group. This case series documents the first known occurrence of ranavirus-associated disease in chameleons and demonstrates the potential for interspecies transmission between chelonian and squamate reptiles.
Collapse
|
9
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
10
|
Carstairs SJ, Kyle CJ, Vilaça ST. High prevalence of subclinical frog virus 3 infection in freshwater turtles of Ontario, Canada. Virology 2020; 543:76-83. [PMID: 32174301 DOI: 10.1016/j.virol.2020.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Ranaviruses have been associated with chelonian mortality. In Canada, the first two cases of ranavirus were detected in turtles in 2018 in Ontario, although a subsequent survey of its prevalence failed to detect additional positive cases. To confirm the prevalence of ranavirus in turtles in Ontario, we used a more sensitive method to investigate if lower level persistent infection was present in the population. Here we report results via a combination of qPCR, PCR, Sanger sequencing and genome sequencing from turtles from across Ontario, with no clinical signs of illness. We found 2 positives with high viral load and 5 positives with low viral load. Histopathology found subtle histological changes. DNA sequences identified two types of frog virus 3 (FV3), and genome sequencing identified a ranavirus similar to wild-type FV3. Our results show that the virus has been present in Ontario's turtles as subclinical infections.
Collapse
Affiliation(s)
| | - Christopher J Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, K9J 7N8, Canada; Natural Resources DNA Profiling and Forensic Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Sibelle Torres Vilaça
- Biology Department, Trent University, Peterborough, Ontario, K9J 7B8, Canada; Natural Resources DNA Profiling and Forensic Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada.
| |
Collapse
|
11
|
Sriwanayos P, Subramaniam K, Stilwell NK, Imnoi K, Popov VL, Kanchanakhan S, Polchana J, Waltzek TB. Phylogenomic characterization of ranaviruses isolated from cultured fish and amphibians in Thailand. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are emerging pathogens associated with worldwide epizootics in farmed and wild ectothermic vertebrates. In this study, we determined the full genomes of eight ranaviruses isolated from marbled sleeper goby ( Oxyeleotris marmorata), goldfish ( Carassius auratus), guppy ( Poecilia reticulata), tiger frog ( Hoplobatrachus tigerinus), Asian grass frog ( Fejervarya limnocharis), and East Asian bullfrog ( H. rugulosus) cultured or imported into Thailand. These ranaviral isolates induced the same cytopathic effects (i.e., progression of coalescing round plaques) in epithelioma papulosum cyprini (EPC) cell cultures. Transmission electron microscopy of infected EPC cells revealed cytoplasmic viral particles with ultrastructural features typical for ranaviruses. Pairwise genetic comparisons of the complete major capsid protein coding sequences from the Thai ranaviruses displayed the highest identity (99.8%–100%) to a ranavirus (tiger frog virus; TFV) isolated from diseased tiger frogs cultured in China, a slightly lower identity (99.3%–99.4%) to a ranavirus (Wamena virus; WV) isolated from diseased green tree pythons ( Morelia viridis) illegally exported from Papua New Guinea, and a lower identity to 35 other ranaviruses (93.7%–98.6%). Phylogenomic analyses supported the eight Thai ranaviruses, Chinese TFV, and WV as a subclade within a larger frog virus 3 clade. Our findings confirm the spread of TFV among cultured fish and amphibians in Asia and likely in reptiles in Oceania. Biosecurity measures are needed to ensure TFV does not continue to spread throughout Southeast Asia and to other parts of the world via international trade.
Collapse
Affiliation(s)
- Preeyanan Sriwanayos
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
- Aquatic Animal Health Research and Development Division, Department of Fisheries, Bangkok 10900, Thailand
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Natalie K. Stilwell
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Kamonchai Imnoi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Somkiat Kanchanakhan
- Aquatic Animal Health Research and Development Division, Department of Fisheries, Bangkok 10900, Thailand
- Department of Fisheries, Chonburi Provincial Fishery Office, Chonburi 20000, Thailand
| | - Jaree Polchana
- Aquatic Animal Health Research and Development Division, Department of Fisheries, Bangkok 10900, Thailand
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Vilaça ST, Bienentreu JF, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Frog Virus 3 Genomes Reveal Prevalent Recombination between Ranavirus Lineages and Their Origins in Canada. J Virol 2019; 93:e00765-19. [PMID: 31341053 PMCID: PMC6798099 DOI: 10.1128/jvi.00765-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses are pathogens associated with the decline of amphibian populations across much of their distribution. In North America, frog virus 3 (FV3) is a widely distributed pathogen with wild populations of amphibians harboring different lineages and putative recombinants between FV3 and common midwife toad virus (CMTV). These recombinants have higher pathogenicity, and CMTV-derived genes associated with virulence are reported in wild strains in Canada. However, while FV3 is linked to amphibian die-offs in North America, CMTVs have been reported only in commercial frog farms in North America. We sequenced complete genomes of 18 FV3 isolates from three amphibian species to characterize genetic diversity of the lineages in Canada and infer possible recombinant regions. The 18 FV3 isolates displayed different signals of recombination, varying from none to interspersed recombination with previously isolated CMTV-like viruses. In general, most recombination breakpoints were located within open reading frames (ORFs), generating new ORFs and proteins that were a mixture between FV3 and CMTV. A combined spatial and temporal phylogeny suggests the presence of the FV3 lineage in Canada is relatively contemporary (<100 years), corroborating the hypothesis that both CMTV- and FV3-like viruses spread to North America when the international commercial amphibian trade started. Our results highlight the importance of pathogen surveillance and viral dynamics using full genomes to more clearly understand the mechanisms of disease origin and spread.IMPORTANCE Amphibian populations are declining worldwide, and these declines have been linked to a number of anthropogenic factors, including disease. Among the pathogens associated with amphibian mortality, ranaviruses have caused massive die-offs across continents. In North America, frog virus 3 (FV3) is a widespread ranavirus that can infect wild and captive amphibians. In this study, we sequenced full FV3 genomes isolated from frogs in Canada. We report widespread recombination between FV3 and common midwife toad virus (CMTV). Phylogenies indicate a recent origin for FV3 in Canada, possibly as a result of international amphibian trade.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Joe-Felix Bienentreu
- Genetics and Ecology of Amphibian Research Group (GEARG), Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Craig R Brunetti
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - David Lesbarrères
- Genetics and Ecology of Amphibian Research Group (GEARG), Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Dennis L Murray
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
13
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Pathogen Risk Analysis for Wild Amphibian Populations Following the First Report of a Ranavirus Outbreak in Farmed American Bullfrogs ( Lithobates catesbeianus) from Northern Mexico. Viruses 2019; 11:v11010026. [PMID: 30609806 PMCID: PMC6356443 DOI: 10.3390/v11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 01/20/2023] Open
Abstract
Ranaviruses are the second deadliest pathogens for amphibian populations throughout the world. Despite their wide distribution in America, these viruses have never been reported in Mexico, the country with the fifth highest amphibian diversity in the world. This paper is the first to address an outbreak of ranavirus in captive American bullfrogs (Lithobates catesbeianus) from Sinaloa, Mexico. The farm experienced high mortality in an undetermined number of juveniles and sub-adult bullfrogs. Affected animals displayed clinical signs and gross lesions such as lethargy, edema, skin ulcers, and hemorrhages consistent with ranavirus infection. The main microscopic lesions included mild renal tubular necrosis and moderate congestion in several organs. Immunohistochemical analyses revealed scant infected hepatocytes and renal tubular epithelial cells. Phylogenetic analysis of five partial ranavirus genes showed that the causative agent clustered within the Frog virus 3 clade. Risk assessment with the Pandora+ protocol demonstrated a high risk for the pathogen to affect amphibians from neighboring regions (overall Pandora risk score: 0.619). Given the risk of American bullfrogs escaping and spreading the disease to wild amphibians, efforts should focus on implementing effective containment strategies and surveillance programs for ranavirus at facilities undertaking intensive farming of amphibians.
Collapse
|
15
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
16
|
Stilwell NK, Whittington RJ, Hick PM, Becker JA, Ariel E, van Beurden S, Vendramin N, Olesen NJ, Waltzek TB. Partial validation of a TaqMan real-time quantitative PCR for the detection of ranaviruses. DISEASES OF AQUATIC ORGANISMS 2018; 128:105-116. [PMID: 29733025 DOI: 10.3354/dao03214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ranaviruses are globally emerging pathogens negatively impacting wild and cultured fish, amphibians, and reptiles. Although conventional and diagnostic real-time PCR (qPCR) assays have been developed to detect ranaviruses, these assays often have not been tested against the known diversity of ranaviruses. Here we report the development and partial validation of a TaqMan real-time qPCR assay. The primers and TaqMan probe targeted a conserved region of the major capsid protein (MCP) gene. A series of experiments using a 10-fold dilution series of Frog virus 3 (FV3) MCP plasmid DNA revealed linearity over a range of 7 orders of magnitude (107-101), a mean correlation coefficient (R2) of >0.99, and a mean efficiency of 96%. The coefficient of variation of intra- and inter-assay variability ranged from <0.1-3.5% and from 1.1-2.3%, respectively. The analytical sensitivity was determined to be 10 plasmid copies of FV3 DNA. The qPCR assay detected a panel of 33 different ranaviral isolates originating from fish, amphibian, and reptile hosts from all continents excluding Africa and Antarctica, thereby representing the global diversity of ranaviruses. The assay did not amplify highly divergent ranaviruses, members of other iridovirus genera, or members of the alloherpesvirus genus Cyprinivirus. DNA from fish tissue homogenates previously determined to be positive or negative for the ranavirus Epizootic hematopoietic necrosis virus by virus isolation demonstrated a diagnostic sensitivity of 95% and a diagnostic specificity of 100%. The reported qPCR assay provides an improved expedient diagnostic tool and can be used to elucidate important aspects of ranaviral pathogenesis and epidemiology in clinically and sublinically affected fish, amphibians, and reptiles.
Collapse
Affiliation(s)
- Natalie K Stilwell
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ranavirus genotypes in the Netherlands and their potential association with virulence in water frogs (Pelophylax spp.). Emerg Microbes Infect 2018; 7:56. [PMID: 29615625 PMCID: PMC5882854 DOI: 10.1038/s41426-018-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/04/2017] [Accepted: 02/25/2018] [Indexed: 12/15/2022]
Abstract
Ranaviruses are pathogenic viruses for poikilothermic vertebrates worldwide. The identification of a common midwife toad virus (CMTV) associated with massive die-offs in water frogs (Pelophylax spp.) in the Netherlands has increased awareness for emerging viruses in amphibians in the country. Complete genome sequencing of 13 ranavirus isolates collected from ten different sites in the period 2011–2016 revealed three CMTV groups present in distinct geographical areas in the Netherlands. Phylogenetic analysis showed that emerging viruses from the northern part of the Netherlands belonged to CMTV-NL group I. Group II and III viruses were derived from the animals located in the center-east and south of the country, and shared a more recent common ancestor to CMTV-amphibian associated ranaviruses reported in China, Italy, Denmark, and Switzerland. Field monitoring revealed differences in water frog host abundance at sites where distinct ranavirus groups occur; with ranavirus-associated deaths, host counts decreasing progressively, and few juveniles found in the north where CMTV-NL group I occurs but not in the south with CMTV-NL group III. Investigation of tandem repeats of coding genes gave no conclusive information about phylo-geographical clustering, while genetic analysis of the genomes revealed truncations in 17 genes across CMTV-NL groups II and III compared to group I. Further studies are needed to elucidate the contribution of these genes as well as environmental variables to explain the observed differences in host abundance.
Collapse
|
18
|
Invertebrate Iridoviruses: A Glance over the Last Decade. Viruses 2018; 10:v10040161. [PMID: 29601483 PMCID: PMC5923455 DOI: 10.3390/v10040161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Collapse
|
19
|
Toenshoff ER, Fields PD, Bourgeois YX, Ebert D. The End of a 60-year Riddle: Identification and Genomic Characterization of an Iridovirus, the Causative Agent of White Fat Cell Disease in Zooplankton. G3 (BETHESDA, MD.) 2018; 8:1259-1272. [PMID: 29487186 PMCID: PMC5873915 DOI: 10.1534/g3.117.300429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
The planktonic freshwater crustacean of the genus Daphnia are a model system for biomedical research and, in particular, invertebrate-parasite interactions. Up until now, no virus has been characterized for this system. Here we report the discovery of an iridovirus as the causative agent of White Fat Cell Disease (WFCD) in Daphnia WFCD is a highly virulent disease of Daphnia that can easily be cultured under laboratory conditions. Although it has been studied from sites across Eurasia for more than 60 years, its causative agent had not been described, nor had an iridovirus been connected to WFCD before now. Here we find that an iridovirus-the Daphnia iridescent virus 1 (DIV-1)-is the causative agent of WFCD. DIV-1 has a genome sequence of about 288 kbp, with 39% G+C content and encodes 367 predicted open reading frames. DIV-1 clusters together with other invertebrate iridoviruses but has by far the largest genome among all sequenced iridoviruses. Comparative genomics reveal that DIV-1 has apparently recently lost a substantial number of unique genes but has also gained genes by horizontal gene transfer from its crustacean host. DIV-1 represents the first invertebrate iridovirus that encodes proteins to purportedly cap RNA, and it contains unique genes for a DnaJ-like protein, a membrane glycoprotein and protein of the immunoglobulin superfamily, which may mediate host-pathogen interactions and pathogenicity. Our findings end a 60-year search for the causative agent of WFCD and add to our knowledge of iridovirus genomics and invertebrate-virus interactions.
Collapse
Affiliation(s)
- Elena R Toenshoff
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter D Fields
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Yann X Bourgeois
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Dieter Ebert
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
20
|
Hrynyk MA, Brunetti C, Kerr L, Metcalfe CD. Effect of imidacloprid on the survival of Xenopus tadpoles challenged with wild type frog virus 3. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:152-158. [PMID: 29179150 DOI: 10.1016/j.aquatox.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 06/07/2023]
Abstract
The sensitivity of amphibians to Ranavirus may be increased by exposure to other environmental stressors, including chemical contaminants. Neonicotinoid insecticides comprise 27% of the global insecticide market and have been detected in wetlands and other aquatic habitats. The present study focused on the effects of exposure of pre-metamorphic Xenopus laevis to the neonicotinoid, imidacloprid (IMI) on sensitivity to frog virus 3 (FV3) infection. It was hypothesized that exposure of tadpoles to IMI at sublethal concentrations of 1 and 500μgL-1 would increase FV3 related mortalities relative to tadpole mortalities in a control treatment with only the virus. However, contrary to the predicted outcome, IMI reduced the rates of mortality following viral challenge, although the total mortalities by the 25th day after infection did not differ among the treatments. These results should not be interpreted as an indication that neonicotinoid insecticides are beneficial to aquatic ecosystems, since these insecticides cause toxic responses at low concentrations to other non-target aquatic organisms.
Collapse
Affiliation(s)
- Morgan A Hrynyk
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Craig Brunetti
- Biology Department, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Leslie Kerr
- Biology Department, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Chris D Metcalfe
- The School of the Environment, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada.
| |
Collapse
|
21
|
Saucedo B, Hughes J, van Beurden SJ, Suárez NM, Haenen OLM, Voorbergen-Laarman M, Gröne A, Kik MJL. Complete Genome Sequence of Frog virus 3, Isolated from a Strawberry Poison Frog ( Oophaga pumilio) Imported from Nicaragua into the Netherlands. GENOME ANNOUNCEMENTS 2017; 5:e00863-17. [PMID: 28860243 PMCID: PMC5578841 DOI: 10.1128/genomea.00863-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Frog virus 3 was isolated from a strawberry poison frog (Oophaga pumilio) imported from Nicaragua via Germany to the Netherlands, and its complete genome sequence was determined. Frog virus 3 isolate Op/2015/Netherlands/UU3150324001 is 107,183 bp long and has a nucleotide similarity of 98.26% to the reference Frog virus 3 isolate.
Collapse
Affiliation(s)
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Olga L M Haenen
- Wageningen Bioveterinary Research of Wageningen UR, Lelystad, the Netherlands
| | | | | | | |
Collapse
|
22
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
23
|
Price SJ. Comparative Genomics of Amphibian-like Ranaviruses, Nucleocytoplasmic Large DNA Viruses of Poikilotherms. Evol Bioinform Online 2016; 11:71-82. [PMID: 27812275 PMCID: PMC5081246 DOI: 10.4137/ebo.s33490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examined to assess variation in genome content and evolutionary processes. The viruses studied were closely related, but their genome content varied considerably, with 29 genes identified that were not present in all of the major clades. Twenty-one genes had evidence of recombination, while a virus isolated from a captive reptile appeared to be a mosaic of two divergent parents. Positive selection was also found to be acting on more than a quarter of Ranavirus genes and was found most frequently in the Spanish common midwife toad virus, which has had a severe impact on amphibian host communities. Efforts to resolve the root of this group by inclusion of an outgroup were inconclusive, but a set of core genes were identified, which recovered a well-supported species tree.
Collapse
Affiliation(s)
- Stephen J Price
- Genetics, Evolution and Environment department, UCL Genetics Institute, London, UK.; Institute of Zoology, Zoological Society of London (ZSL), London, UK
| |
Collapse
|
24
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
25
|
Echaubard P, Leduc J, Pauli B, Chinchar VG, Robert J, Lesbarrères D. Environmental dependency of amphibian-ranavirus genotypic interactions: evolutionary perspectives on infectious diseases. Evol Appl 2014; 7:723-33. [PMID: 25469155 PMCID: PMC4227854 DOI: 10.1111/eva.12169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/02/2014] [Indexed: 01/27/2023] Open
Abstract
The context-dependent investigations of host–pathogen genotypic interactions, where environmental factors are explicitly incorporated, allow the assessment of both coevolutionary history and contemporary ecological influences. Such a functional explanatory framework is particularly valuable for describing mortality trends and identifying drivers of disease risk more accurately. Using two common North American frog species (Lithobates pipiens and Lithobates sylvaticus) and three strains of frog virus 3 (FV3) at different temperatures, we conducted a laboratory experiment to investigate the influence of host species/genotype, ranavirus strains, temperature, and their interactions, in determining mortality and infection patterns. Our results revealed variability in host susceptibility and strain infectivity along with significant host–strain interactions, indicating that the outcome of an infection is dependent on the specific combination of host and virus genotypes. Moreover, we observed a strong influence of temperature on infection and mortality probabilities, revealing the potential for genotype–genotype–environment interactions to be responsible for unexpected mortality in this system. Our study thus suggests that amphibian hosts and ranavirus strains genetic characteristics should be considered in order to understand infection outcomes and that the investigation of coevolutionary mechanisms within a context-dependent framework provides a tool for the comprehensive understanding of disease dynamics.
Collapse
Affiliation(s)
- Pierre Echaubard
- Department of Biology, Genetics and Ecology of Amphibians Research Group (GEARG), Laurentian University Sudbury, ON, Canada
| | - Joel Leduc
- Department of Biology, Genetics and Ecology of Amphibians Research Group (GEARG), Laurentian University Sudbury, ON, Canada
| | - Bruce Pauli
- Science and Technology Branch, National Wildlife Research Centre, Environment Canada, Carleton University Ottawa, ON, Canada
| | - V Gregory Chinchar
- Department of Microbiology, University of Mississippi Medical Center Jackson, MS, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center Rochester, NY, USA
| | - David Lesbarrères
- Department of Biology, Genetics and Ecology of Amphibians Research Group (GEARG), Laurentian University Sudbury, ON, Canada
| |
Collapse
|