1
|
Lai TO, Boon SS, Law PT, Chen Z, Thomas M, Banks L, Chan PK. Oncogenicitiy Comparison of Human Papillomavirus Type 52 E6 Variants. J Gen Virol 2019; 100:484-496. [PMID: 30676312 DOI: 10.1099/jgv.0.001222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus (HPV) infection contributes to virtually all cases of cervical cancer, the fourth most common cancer affecting women worldwide. The oncogenicity of HPV is mainly attributable to the E6 and E7 oncoproteins. HPV-52 is the seventh most common HPV type globally, but it has a remarkably high prevalence in East Asia. In previous studies it has been speculated that the oncogenicity might vary among different HPV-52 variants. In the present study, we compared the oncogenicity of E6 derived from the HPV-52 prototype and three commonly found variants, V1 (K93R), V2 (E14D/V92L) and V3 (K93R/N122K), through molecular and phenotypic approaches. We demonstrated that cells containing V1 achieved higher colony formation and showed greater cell migration ability when compared to other variants, but no difference in cell immortalization ability was observed. At the molecular level, the three variants formed complexes with E6-associated protein (E6AP) and p53 as efficiently as the prototype. They degraded p53 and PSD95/Dlg/ZO-1(PDZ) proteins, including MAGI-1c and Dlg, to a similar extent. They also exhibited a similar subcellular localization, and shared a half-life of approximately 45 min. Our findings provide a clearer picture of HPV-52 E6 variant oncogenicity, which is important for further studies aiming to understand the unusually high prevalence of HPV-52 among cervical cancers in East Asia.
Collapse
Affiliation(s)
- Tsz On Lai
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Siaw Shi Boon
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Priscilla Ty Law
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Zigui Chen
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Miranda Thomas
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul Ks Chan
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
2
|
Purification and Characterization of Antibodies in Single-Chain Format against the E6 Oncoprotein of Human Papillomavirus Type 16. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6583852. [PMID: 29888271 PMCID: PMC5985123 DOI: 10.1155/2018/6583852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
In Human Papillomaviruses- (HPV-) associated carcinogenesis, continuous expression of the E6 oncoprotein supports its value as a potential target for the development of diagnostics and therapeutics for HPV cancer. We previously reported that the I7 single-chain antibody fragment (scFv) specific for HPV16 E6, expressed as an intrabody by retroviral system, could inhibit significantly the growth of cervical cancer cells in vitro and was even able to reduce tumor development in experimental HPV-related cancer models. Nevertheless, for the development of therapeutic tools to be employed in humans, it is important to achieve maximum safety guarantee, which can be provided by the protein format. In the current study, two anti-16E6 scFvs derived from I7 were expressed in E. coli and purified in soluble form by affinity chromatography. Specificity, sensitivity and stability in physiologic environment of the purified scFvs were demonstrated by binding studies using recombinant 16E6 as an antigen. The scFvs functionality was confirmed by immunofluorescence in cervical cancer cells, where the scFvs were able to recognize the nuclear E6. Furthermore, an antiproliferative activity of the scFvI7nuc delivered in protein format to HPV16-positive cell lines was observed. Our results demonstrate that functional anti-16E6 scFvs can be produced in E. coli, suggesting that such purified antibodies could be used in the diagnosis and treatment of HPV-induced malignancies.
Collapse
|
3
|
Vaisman CE, Del Moral-Hernandez O, Moreno-Campuzano S, Aréchaga-Ocampo E, Bonilla-Moreno R, Garcia-Aguiar I, Cedillo-Barron L, Berumen J, Nava P, Villegas-Sepúlveda N. C33-A cells transfected with E6*I or E6*II the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis. Virus Res 2018; 247:94-101. [PMID: 29452161 DOI: 10.1016/j.virusres.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022]
Abstract
The HPV-16 E6/E7 bicistronic immature transcript produces 4 mature RNAs: the unspliced HPV-16 E6/E7pre-mRNA product and 3 alternatively spliced mRNAs. The 3 spliced mRNAs encode short forms of the E6 oncoprotein, namely E6*I, E6*II and E6^E7. In this study we showed that transfection of C-33A cells with monocistronic constructs of these cDNAs fused to GFP, produced different effects on apoptosis, after the treatment with cisplatin. Transfection of C-33A cells with the full-length E6-GFP oncoprotein resulted in a 50% decrease in cell death, while the transfection with the E6*I-GFP construct showed only a 25% of diminution of cell death, compared to the control cells. Transfection with the E6^E7-GFP or E7-GFP construct had no effect on the number of the apoptotic cells, compared with control cells. Conversely, transfection with the E6*II construct resulted in higher cell death than the control cells. Taken together, these results suggested that E6*I or E6*II, the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis, when transfected in C-33A cells.
Collapse
Affiliation(s)
- Carolina E Vaisman
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico
| | - Oscar Del Moral-Hernandez
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Samadhi Moreno-Campuzano
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico
| | - Raul Bonilla-Moreno
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico
| | - Israel Garcia-Aguiar
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico
| | - Leticia Cedillo-Barron
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico
| | - Jaime Berumen
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), AP 04510, Mexico; Unidad de Medicina Genómica, Hospital General, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias del CINVESTAV, IPN. Av. IPN 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico
| | - Nicolas Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) AP, 14740, Mexico.
| |
Collapse
|
4
|
Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, Lizano M. The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis. Viruses 2018; 10:v10010045. [PMID: 29346309 PMCID: PMC5795458 DOI: 10.3390/v10010045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent infections with High Risk Human Papillomaviruses (HR-HPVs) are the main cause of cervical cancer development. The E6 and E7 oncoproteins of HR-HPVs are derived from a polycistronic pre-mRNA transcribed from an HPV early promoter. Through alternative splicing, this pre-mRNA produces a variety of E6 spliced transcripts termed E6*. In pre-malignant lesions and HPV-related cancers, different E6/E6* transcriptional patterns have been found, although they have not been clearly associated to cancer development. Moreover, there is a controversy about the participation of E6* proteins in cancer progression. This review addresses the regulation of E6 splicing and the different functions that have been found for E6* proteins, as well as their possible role in HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
5
|
Human Papillomavirus 16 (HPV-16), HPV-18, and HPV-31 E6 Override the Normal Phosphoregulation of E6AP Enzymatic Activity. J Virol 2017; 91:JVI.01390-17. [PMID: 28835500 DOI: 10.1128/jvi.01390-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) E6 oncoproteins recruit the cellular ubiquitin ligase E6AP/UBE3A to target cellular substrates for proteasome-mediated degradation, and one consequence of this activity is the E6 stimulation of E6AP autoubiquitination and degradation. Recent studies identified an autism-linked mutation within E6AP at T485, which was identified as a protein kinase A phosphoacceptor site and which could directly regulate E6AP ubiquitin ligase activity. In this study, we have analyzed how T485-mediated regulation of E6AP might affect E6 targeting of some of its known substrates. We show that modulation of T485 has no effect on the ability of E6 to direct either p53 or Dlg for degradation. Furthermore, T485 regulation has no effect on HPV-16 or HPV-31 E6-induced autodegradation of E6AP but does affect HPV-18 E6-induced autodegradation of E6AP. In cells derived from cervical cancers, we find low levels of both phosphorylated and nonphosphorylated E6AP in the nucleus. However, ablation of E6 results in a dramatic accumulation of phospho-E6AP in the cytoplasm, whereas nonphosphorylated E6AP accumulates primarily in the nucleus. Interestingly, E6AP phosphorylation at T485 confers association with 14-3-3 proteins, and this interaction seems to be important, in part, for the ability of E6 to recruit phospho-E6AP into the nucleus. These results demonstrate that HPV E6 overrides the normal phosphoregulation of E6AP, both in terms of its enzymatic activity and its subcellular distribution.IMPORTANCE Recent reports demonstrate the importance of phosphoregulation of E6AP for its normal enzymatic activity. Here, we show that HPV E6 is capable of overriding this regulation and can promote degradation of p53 and Dlg regardless of the phosphorylation status of E6AP. Furthermore, E6 interaction with E6AP also significantly alters how E6AP is subject to autodegradation and suggests that this is not a simple stimulation of an already-existing activity but rather a redirection of E6AP activity toward itself. Furthermore, E6-mediated regulation of the subcellular distribution of phospho-E6AP appears to be dependent, in part, upon the 14-3-3 family of proteins.
Collapse
|
6
|
Hong A, Zhang X, Jones D, Zhang M, Lee CS, Lyons JG, Veillard AS, Rose B. E6 viral protein ratio correlates with outcomes in human papillomavirus related oropharyngeal cancer. Cancer Biol Ther 2015; 17:181-7. [PMID: 26575468 DOI: 10.1080/15384047.2015.1108489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The study aimed to identify prognostic markers to improve the management of patients with HPV positive OSCC Methods: We determined the ratio of HPV E6*I and E6*II splice variants by quantitative RT-PCR in 177 HPV positive OSCC and correlated the findings with other clinicopathological data Results: There was no significant difference in locoregional recurrence (HR 1.72 p = 0.24) and death (HR 1.65, p = 0.13) among patients whose tumors had an E6*I/*II ratio ≥1 compared with an E6*I/*II ratio of <1. Univariate analysis showed that patients with E6*I/*II ≥1 OSCC were more likely to have an event. In the multivariable analysis, there was a trend for more events in patients with E6*I/*II ratio ≥1 (HR 1.70, 95% CI 0.95-3.03, p = 0.07) CONCLUSION: Our data suggest that the use of HPV 16 spliced transcripts may help to predict for poorer outcomes in patients with HPV positive OSCC.
Collapse
Affiliation(s)
- Angela Hong
- a Central Clinical School, Sydney Medical School, The University of Sydney , NSW , Australia.,b Department of Radiation Oncology , Lifehouse , NSW , Australia
| | - Xiaoying Zhang
- c Department of Infectious Diseases and Immunology , Sydney Medical School, The University of Sydney , NSW , Australia
| | - Deanna Jones
- c Department of Infectious Diseases and Immunology , Sydney Medical School, The University of Sydney , NSW , Australia
| | - Mei Zhang
- a Central Clinical School, Sydney Medical School, The University of Sydney , NSW , Australia.,b Department of Radiation Oncology , Lifehouse , NSW , Australia
| | - C Soon Lee
- d Department of Anatomical Pathology , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| | - J Guy Lyons
- a Central Clinical School, Sydney Medical School, The University of Sydney , NSW , Australia
| | | | - Barbara Rose
- c Department of Infectious Diseases and Immunology , Sydney Medical School, The University of Sydney , NSW , Australia
| |
Collapse
|
7
|
Vazquez-Vega S, Sanchez-Suarez LP, Andrade-Cruz R, Castellanos-Juarez E, Contreras-Paredes A, Lizano-Soberon M, Garcia-Carranca A, Benitez Bribiesca L. Regulation of p14ARF expression by HPV-18 E6 variants. J Med Virol 2014; 85:1215-21. [PMID: 23918540 DOI: 10.1002/jmv.23568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 01/28/2023]
Abstract
A common causative agent for uterine cervical cancer is the human papillomavirus type 18 (HPV-18) which has three phylogenic variants: Asian-Amerindian, European, and African. Each variant shows significant molecular differences in the E6 gene. E6 oncoprotein is a negative regulator of tumor suppressor protein p53, hence, this oncoprotein indirectly regulates the expression of tumor-suppressor p14(ARF) . p14(ARF) and p16(INK4A) genes are overexpressed in--and have been proposed as markers for--HPV-related cervical cancer. In order to dissect the role of E6 on the regulation of p14(ARF) expression, separating it from that of other intervening factors, transfection of E6 variants to MCF-7 cells was performed, assessing cDNA transcript levels by RT-PCR, whereas p14(ARF) and p53 expression were evaluated by immunocytochemistry and Western blot. E6 transfected cells differentially expressed transcripts of two molecular forms: E6 and E6*. The ratio of these two forms varied with the transfected E6 variant. With the Asian-Amerindian variant, the ratio was E6 > E6*, whereas with the European and the African the ratio was E6* > E6. As expected with the E6* construct, E6* transcripts were solely observed. In addition, when E6 > E6* and p53 expression was low, p14(ARF) was high and when E6* > E6 and p53 expression was high, p14(ARF) was low. In conclusion, each E6 variant distinctively affects p53 levels and consequently p14(ARF) expression, finding that could be related with the differences in oncogenic effect of infection with the diverse high-risk HPV variants.
Collapse
Affiliation(s)
- Salvador Vazquez-Vega
- Department of Pathology, Hospital of Gynecology and Pediatrics 3A, Instituto Mexicano del Seguro Social, Delegación Norte, Mexico, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Manzo-Merino J, Massimi P, Lizano M, Banks L. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8. Virology 2014; 450-451:146-52. [DOI: 10.1016/j.virol.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
|
9
|
Transactivation activity of human papillomavirus type 16 E6*I on aldo-keto reductase genes enhances chemoresistance in cervical cancer cells. J Gen Virol 2012; 93:1081-1092. [DOI: 10.1099/vir.0.038265-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oncogenic E6 proteins produced by high-risk human papillomaviruses (HPVs) are invariably expressed in cervical carcinomas and are multifunctional proteins capable of affecting host-cell proliferation by binding and deregulating key host molecules such as p53. High-risk HPVs, including HPV16, have the unique ability to splice the E6 viral transcript, resulting in the production of a truncated E6 protein known as E6*I whose precise biological function is unclear. This study explored the changes in gene expression of the cervical cancer C33A cell line stably expressing HPV16 E6*I (16E6*I) and observed the upregulation of ten genes. Two of these genes were aldo-keto reductases (AKR1Cs), AKR1C1 and AKR1C3, which have been implicated in drug resistance. The results demonstrated that expression of 16E6*I, but not full-length E6, specifically increased AKR1C1 transcript levels although it did not alter AKR1C2 transcript levels. HPV16 E7 alone also had the ability to cause a moderate increase in AKR1C3 at both mRNA and protein levels. Site-directed mutagenesis of 16E6*I revealed that transactivation activity was abolished in R8A, R10A and T17A 16E6*I mutants without altering their intracellular localization patterns. Loss of transactivation activity of the 16E6*I mutants resulted in a significant loss of AKR1C expression and a decrease in drug resistance. Analysis of the AKR1C1 promoter revealed that, unlike the E6 protein, 16E6*I does not mediate transactivation activity solely through Sp1-binding sites. Taken together, it was concluded that 16E6*I has a novel function in upregulating expression of AKR1C and, in concert with E7, has implications for drug treatment in HPV-mediated cervical cancer.
Collapse
|
10
|
p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol 2011; 86:94-107. [PMID: 22013048 DOI: 10.1128/jvi.00751-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) are the etiological agents of cervical cancer and other human malignancies. HPVs are classified into high- and low-risk genotypes according to their association with cancer. Host cell transformation by high-risk HPVs relies in part on the ability of the viral E6 protein to induce the degradation of p53. We report the development of a cellular assay that accurately quantifies the p53 degradation activity of E6 in vivo, based on the fusion of p53 to Renilla luciferase (RLuc-p53). This assay was used to measure the p53 degradation activities of E6 proteins from 29 prevalent HPV types and variants of HPV type 16 (HPV16) and HPV33 by determining the amount of E6 expression vector required to reduce by half the levels of RLuc-p53 (50% effective concentration [EC₅₀]). These studies revealed an unexpected variability in the p53 degradation activities of different E6 proteins, even among active types whose EC₅₀s span more than 2 log units. Differences in activity were greater between types than between variants and did not correlate with differences in the intracellular localization of E6, with most being predominantly nuclear. Protein and mRNA expression of the 29 E6 proteins was also examined. For 16 high-risk types, spliced transcripts that encode shorter E6*I proteins of variable sizes and abundances were detected. Mutation of the splice donor site in five different E6 proteins increased their p53 degradation activity, suggesting that mRNA splicing can limit the activity of some high-risk E6 types. The quantification of p53 degradation in vivo represents a novel tool to systematically compare the oncogenic potentials of E6 proteins from different HPV types and variants.
Collapse
|
11
|
Heaton PR, Deyrieux AF, Bian XL, Wilson VG. HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res 2011; 158:199-208. [PMID: 21510985 DOI: 10.1016/j.virusres.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
Abstract
The human papillomavirus oncogenic protein, E6, interacts with a number of cellular proteins, and for some targets, E6 directs their degradation through the ubiquitin-proteasome pathway. Post-translational modification with ubiquitin-like modifiers, such as SUMO, also influences protein activities, protein-protein interactions, and protein stability. We report that the high risk HPVE6 proteins reduce the intracellular quantity of the sole SUMO conjugation enzyme, Ubc9, concomitant with decreased host sumoylation. E6 did not significantly influence transcription of Ubc9, indicating that the effects were likely at the protein level. Consistent with typical E6-mediated proteasomal degradation, E6 bound to Ubc9 in vitro, and required E6AP for reduction of Ubc9 levels. Under stable E6 expression conditions in differentiating keratinocytes there was a decrease in Ubc9 and a loss of numerous sumoylated targets indicating a significant perturbation of the normal sumoylation profile. While E6 is known to inhibit PIASy, a SUMO ligase, our results suggest that HPV E6 also targets the Ubc9 protein to modulate host cell sumoylation, suggesting that the sumoylation system may be an important target during viral reproduction and possibly the subsequent development of cervical cancer.
Collapse
Affiliation(s)
- Phillip R Heaton
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
12
|
Heer A, Alonso LG, de Prat-Gay G. E6*, the 50 Amino Acid Product of the Most Abundant Spliced Transcript of the E6 Oncoprotein in High-Risk Human Papillomavirus, Is a Promiscuous Folder and Binder. Biochemistry 2011; 50:1376-83. [DOI: 10.1021/bi101941c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Angeles Heer
- Instituto Leloir and Instituto de Investigaciones Bioquímicas-Conicet, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | - Gonzalo de Prat-Gay
- Instituto Leloir and Instituto de Investigaciones Bioquímicas-Conicet, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| |
Collapse
|
13
|
|
14
|
Sun L, Shen X, Liu Y, Zhang G, Wei J, Zhang H, Zhang E, Ma F. The location of endogenous wild-type p53 protein in 293T and HEK293 cells expressing low-risk HPV-6E6 fusion protein with GFP. Acta Biochim Biophys Sin (Shanghai) 2010; 42:230-5. [PMID: 20213049 DOI: 10.1093/abbs/gmq009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism underlining human papillomaviruses (HPVs) causing cancer has been studied extensively, and it was concluded that the high-risk HPVs' E6 targeted and degraded tumor suppressor protein p53, leading to infected cells malignant transformation. In contrast, the low-risk HPVs only cause proliferative but non-invasive lesions of infected epithelia. Therefore, we hypothesized that low-risk HPVs' E6 might interact with p53 in a different pattern. We used a mammalian green fluorescent protein (GFP) expression system to express HPV-18E6 and HPV-6E6 fusion proteins in wild-type (wt) p53 cell lines, 293T and HEK293 cells, to investigate the traffic and location of E6s and p53. The results indicated GFP-18E6 was mainly expressed in nucleus, whereas GFP-6E6 was expressed exclusively in cytoplasm. Endogenous wt p53 was shown to be localized in the nuclei of cells transfected with GFP- 18E6. Interestingly, for the first time, we observed that p53 was trapped in the cytoplasm and never translocated into the cell nuclei transfected with GFP-6E6. In conclusion, HPV-6E6 was responsible for the cytoplasmic localization of p53. Therefore, our experiments provide a new insight into the pathogenesis of HPV.
Collapse
Affiliation(s)
- Lina Sun
- State key Laboratory for Infectious Disease Prevention and Control, National Institute for Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
16
|
|
17
|
Ramamoorthy S, Nawaz Z. E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. NUCLEAR RECEPTOR SIGNALING 2008; 6:e006. [PMID: 18432313 PMCID: PMC2329825 DOI: 10.1621/nrs.06006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 03/12/2008] [Indexed: 12/31/2022]
Abstract
Steroid hormone receptors (SHR) belong to a large family of ligand-activated transcription factors that perform their biological functions by enhancing the transcription of specific target genes. The transactivation functions of SHRs are regulated by a specialized group of proteins called coactivators. The SHR coactivators represent a growing class of proteins with various enzymatic activities that serve to modify the chromatin to facilitate the transcription of SHR target genes. The ubiquitin-proteasome pathway enzymes have also been added to the growing list of enzymatic activities that are recruited to the SHR target gene promoters during transcription. One such ubiquitin-proteasome pathway enzyme to be identified and characterized as a SHR coactivator was E6-associated protein (E6-AP). E6-AP is a hect (homologous to E6-associated protein carboxy-terminal domain) domain containing E3 ubiquitin ligase that possesses two independent separable functions; a coactivation function and an ubiquitin-protein ligase activity. Being a component of the ubiquitin-proteasome pathway, it is postulated that E6-AP may orchestrate the dynamics of steroid hormone receptor-mediated transcription by regulating the degradation of the transcriptional complexes. E6-AP has also been shown to be involved in the regulation of various aspects of reproduction such as prostate and mammary gland development. Furthermore, it has been demonstrated that E6-AP expression is down-regulated in breast and prostate tumors and that the expression of E6-AP is inversely associated with that of estrogen and androgen receptors. This review summarizes our current knowledge about the structures, molecular mechanisms, spatiotemporal expression patterns and biological functions of E6-AP.
Collapse
Affiliation(s)
- Sivapriya Ramamoorthy
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|