1
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
2
|
Sun X, Li L, Pan L, Wang Z, Chen H, Shao C, Yu J, Ren Y, Wang X, Huang X, Zhang R, Li G. Infectious bronchitis virus: Identification of Gallus gallus APN high-affinity ligands with antiviral effects. Antiviral Res 2020; 186:104998. [PMID: 33340637 DOI: 10.1016/j.antiviral.2020.104998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Infectious bronchitis virus (IBV) is a coronavirus, causes infectious bronchitis (IB) with high morbidity and mortality, and gives rise to huge economic losses for the poultry industry. Aminopeptidase N (APN) may be one of the IBV functional receptors. In this study, Gallus gallus APN (gAPN) protein was screened by phage-displayed 12-mer peptide library. Two high-affinity peptides H (HDYLYYTFTGNP) and T (TKFSPPSFWYLH) to gAPN protein were selected for in depth characterization of their anti-IBV effects. In vitro, indirect ELISA showed that these two high-affinity ligands could bind IBV S1 antibodies. Quantitative real-time PCR (qRT-PCR) assay, virus yield reduction assay and indirect immunofluorescence assay results revealed 3.125-50 μg/ml of peptide H and 6.25-50 μg/ml of peptide T reduced IBV proliferation in chicken embryo kidney cells (CEKs). In vivo, high-affinity phage-vaccinated chickens were able to induce specific IBV S1 antibodies and IBV neutralizing antibodies. QRT-PCR results confirmed that high-affinity phages reduced virus proliferation in chicken tracheas, lungs and kidneys, and alleviated IBV-induced lesions. By multiple sequence alignment, motif 'YxYY' and 'FxPPxxWxLH' of high-affinity peptides were identified in IBV S1-NTD, while another motif 'YxFxGN' located in S2. These results indicated that high affinity peptides of gAPN could present an alternative approach to IB prevention or treatment.
Collapse
Affiliation(s)
- Xiaoqi Sun
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lanlan Li
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Long Pan
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Wang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Chen
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Changhao Shao
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jia Yu
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yudong Ren
- College of Electrical and Information Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, 150069, China
| | - Xiaodan Huang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Wickramasinghe INA, van Beurden SJ, Weerts EAWS, Verheije MH. The avian coronavirus spike protein. Virus Res 2014; 194:37-48. [PMID: 25451062 PMCID: PMC7114429 DOI: 10.1016/j.virusres.2014.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
Avian coronaviruses of the genus Gammacoronavirus are represented by infectious bronchitis virus (IBV), the coronavirus of chicken. IBV causes a highly contagious disease affecting the respiratory tract and, depending on the strain, other tissues including the reproductive and urogenital tract. The control of IBV in the field is hampered by the many different strains circulating worldwide and the limited protection across strains due to serotype diversity. This diversity is believed to be due to the amino acid variation in the S1 domain of the major viral attachment protein spike. In the last years, much effort has been undertaken to address the role of the avian coronavirus spike protein in the various steps of the virus' live cycle. Various models have successfully been developed to elucidate the contribution of the spike in binding of the virus to cells, entry of cell culture cells and organ explants, and the in vivo tropism and pathogenesis. This review will give an overview of the literature on avian coronavirus spike proteins with particular focus on our recent studies on binding of recombinant soluble spike protein to chicken tissues. With this, we aim to summarize the current understanding on the avian coronavirus spike's contribution to host and tissue predilections, pathogenesis, as well as its role in therapeutic and protective interventions.
Collapse
Affiliation(s)
- I N Ambepitiya Wickramasinghe
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - S J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - E A W S Weerts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - M H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| |
Collapse
|
4
|
Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet Microbiol 2012; 157:285-93. [PMID: 22340967 PMCID: PMC3600652 DOI: 10.1016/j.vetmic.2012.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, is a cause of great economic loss in the poultry industry. The virus mainly infects respiratory epithelium, but can be also detected in other organs. The functional receptor for the virus has not been found and field strains of IBV do not infect conventional cell lines. Recently, it has been shown that the C-type lectins DC-SIGN/L-SIGN can promote entry of several coronaviruses. Here we examine whether DC-SIGN/L-SIGN are entry determinants for IBV. We show that by introducing human DC-SIGN/L-SIGN into non-permissive cells, infection by the IBV is dramatically increased. DC-SIGN mediated infection was inhibited by mannan and anti-lectin antibodies, and was independent of sialic acid levels on the cell. Enhancement of IBV infection also occurred for different serotypes of IBV. Our findings demonstrated that even in the absence of avian-specific receptor, DC-SIGN-like lectins are capable of mediating efficient IBV infection.
Collapse
|
5
|
Ren X, Li G, Liu B. Binding characterization of determinants in porcine aminopeptidase N, the cellular receptor for transmissible gastroenteritis virus. J Biotechnol 2010; 150:202-6. [PMID: 20643168 PMCID: PMC7114188 DOI: 10.1016/j.jbiotec.2010.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 11/27/2022]
Abstract
Four truncated porcine aminopeptidase N (pAPN, a cellular receptor for porcine coronaviruses) proteins were expressed in prokaryotic cells. The recognizing of a specific serum against pAPN to these proteins was investigated by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The binding ability of the proteins to transmissible gastroenteritis virus (TGEV), a porcine coronavirus, was analyzed by ELISA. The inhibitory effect of these proteins to cell infection by TGEV was analyzed using plaque assays. Our data indicate that three truncated pAPNs positively reacted with the specific antiserum and the major binding regions of pAPN were limited in regions 36aa–223aa, 349aa–591aa and 592–963aa. The proteins showed discrepant binding activity to either pAPN antibody or TGE virions. Moreover, the truncated proteins blocked the infection of cells by TGEV to different extent. The results suggest that the major antibody-binding domains of pAPN may associate with the receptor-binding determinants. The role of APN is discussed in the context of virus receptor usage.
Collapse
Affiliation(s)
- Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, 150030 Harbin, China.
| | | | | |
Collapse
|
6
|
Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection. J Virol 2008; 83:1026-35. [PMID: 18987136 DOI: 10.1128/jvi.01387-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human coronavirus HKU1 (HCoV-HKU1) is a recently discovered human coronavirus associated with respiratory tract infections worldwide. In this study, we have identified the major histocompatibility complex class I C molecule (HLA-C) as an attachment factor in facilitating HCoV-HKU1 spike (S)-mediated infection. HCoV-HKU1 S pseudotyped virus was assembled using a human immunodeficiency virus type 1-derived reporter virus harboring the human codon-optimized spike of HCoV-HKU1. We identified human alveolar epithelial A549 cells as the most susceptible cell line among those tested to infection by HCoV-HKU1 S pseudotypes. A549 cells were shown to bind purified soluble HCoV-HKU1 S(1-600) glycopeptide. To search for the functional receptor for HCoV-HKU1, an A549 cDNA expression library was constructed and transduced into the nonpermissive, baby hamster kidney cells line BHK-21. Transduced cells that bind soluble HCoV-HKU1 S(1-600) glycoprotein with C-terminal FLAG were sorted. Sequencing of two independent clones revealed cDNA inserts encoding HLA-C. Inhibition of HLA-C expression or function by RNAi silencing and anti-HLA-C antibody decreased HCoV-HKU1 S pseudotyped virus infection of A549 cells by 62 to 65%, whereas pretreatment of cells with neuraminidase decreased such infection by only 13%. When HLA-C was constitutively expressed in another nonpermissive cell line, NIH-3T3, quantitative PCR showed that the binding of HCoV-HKU1 S pseudotyped virus to cell surfaces was increased by 200-fold, but the cells remained nonsusceptible to HCoV-HKU1 S pseudotyped virus infection. Our data suggest that HLA-C is involved in the attachment of HCoV-HKU1 to A549 cells and is a potential candidate to facilitate cell entry. However, other unknown surface proteins on A549 cells may be concomitantly utilized by S glycoprotein of HCoV-HKU1 during viral entry. Further studies are required to elucidate other putative receptors or coreceptors for HCoV-HKU1 and the mechanism of HCoV-HKU1 S-mediated cell entry.
Collapse
|
7
|
Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent. Microbes Infect 2007; 10:367-73. [PMID: 18396435 PMCID: PMC7110564 DOI: 10.1016/j.micinf.2007.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/05/2007] [Accepted: 12/19/2007] [Indexed: 11/25/2022]
Abstract
Avian Infectious bronchitis virus (IBV) is a coronavirus that infects chickens via the respiratory epithelium as primary target cells. The binding of coronaviruses to the cell surface is mediated by the viral surface protein S. Recently we demonstrated that α2,3-linked sialic acid serves as a receptor determinant for IBV on Vero cells and primary chicken embryo kidney cells. Here we analyze the importance of the sialic acid binding activity for the infection of tracheal organ cultures (TOCs) by different IBV strains. Our results show that α2,3-linked sialic acid also serves as a receptor determinant on chicken TOCs. Infection of TOCs by IBV results in ciliostasis. Desialylation induced by neuraminidase treatment of tracheal organ cultures prior to infection by IBV delayed the ciliostatic effect or resulted in partial loss of ciliary activity. This effect was observed with both respiratory and nephropathogenic strains. Inhibition of ciliostasis was also observed when TOCs were pretreated with an α2,3-specific neuraminidase. Analysis of the tracheal epithelium for reactivity with lectins revealed that the susceptible cells in the epithelium abundantly express α2,3-linked sialic acid. These results indicate that α2,3-linked sialic acid plays an important role for infection of the respiratory epithelium by IBV.
Collapse
|