1
|
Li K, Chen H, Li J, Feng Y, Liang S, Rashid A, Liu M, Li S, Chu Q, Ruan Y, Xing H, Lan G, Qiao W, Shao Y. Distinct genetic clusters in HIV-1 CRF01_AE-infected patients induced variable degrees of CD4 + T-cell loss. mBio 2024; 15:e0334923. [PMID: 38385695 PMCID: PMC10936439 DOI: 10.1128/mbio.03349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Abdur Rashid
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sisi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiming Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
2
|
Liu J, Wu Y, Yang W, Xue X, Sun G, Liu C, Tian S, Sun D, Zhu Q, Wang Z. Population-based human immunodeficiency virus 1 drug resistance profiles among individuals who experienced virological failure to first-line antiretroviral therapy in Henan, China during 2010-2011. AIDS Res Ther 2015; 12:22. [PMID: 26120348 PMCID: PMC4483220 DOI: 10.1186/s12981-015-0062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Henan, China, first-line antiretroviral treatment (ART) was implemented early in a large number of treatment-experienced patients who were more likely to have a drug resistance. Therefore, we investigated the human immunodeficiency virus (HIV)-1 drug resistance profiles among patients in Henan who experienced virological failure to ART. METHOD A cross-sectional survey was administered in 10 major epidemic cities from May 2010 to October 2011. Adult patients who experienced virological failure (virus load ≥1,000 copies/mL) with >1 year of first-line antiretroviral treatment consented to provide blood for genotype resistance testing. The clinical and demographic data were obtained from the patients' medical records. Logistic regression analysis was performed to determine the factors associated with ≥1 significant drug resistance mutation. RESULTS We included 3,235 patients with integral information and valid genotypic resistance data. The city, age, CD4 counts, virus load, treatment duration, and World Health Organization stage were associated with drug resistance, and 64.76% of patients acquired drug resistance. The nucleoside reverse transcriptase inhibitor (NRTI), non-(N)NRTI, and protease inhibitor resistance mutations were found in 50.26, 63.12, and 1.30% of subjects, respectively. Thymidine analogue mutations, NNRTI and even multidrug resistance complex were quite common in this patient cohort. CONCLUSION Multiple and complex patterns of HIV-1 drug resistance mutations were identified among individuals who experienced virological failure to first-line ART in Henan, China during 2010-2011. Therefore, timely virological monitoring, therapy adjustments, and more varieties of drugs and individualized treatment should be immediately considered in this patient population.
Collapse
|
3
|
Yu X, Yuan L, Huang Y, Xu W, Fang Z, Liu S, Shao Y, Jiang S, Ma L. Susceptibility of HIV-1 subtypes B', CRF07_BC and CRF01_AE that are predominantly circulating in China to HIV-1 entry inhibitors. PLoS One 2011; 6:e17605. [PMID: 21412427 PMCID: PMC3055885 DOI: 10.1371/journal.pone.0017605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/30/2011] [Indexed: 11/30/2022] Open
Abstract
Background The B′, CRF07_BC and CRF01_AE are the predominant HIV-1 subtypes in China. It is essential to determine their baseline susceptibility to HIV entry inhibitors before these drugs are used in China. Methodology/Principal Findings The baseline susceptibility of 14 representative HIV-1 isolates (5 CRF07_BC, 4 CRF01_AE, and 5 B′), most of which were R5 viruses, obtained from drug-naïve patients to HIV entry inhibitors, including two fusion inhibitors (enfuvirtide and C34), two CCR5 antagonists (maraviroc and TAK779) and one CXCR4 antagonist (AMD3100), were determined by virus inhibition assay. The sequences of their env genes were amplified and analyzed. These isolates possessed similar susceptibility to C34, but they exhibited different sensitivity to enfuvirtide, maraviroc or TAK779. CRF07_BC isolates, which carried polymorphisms of A578T and V583I in the N-terminal heptad repeat and E630Q, E662A, K665S, A667K and S668N in the C-terminal heptad repeat of gp41, were about 5-fold less sensitive than B′ and CRF01_AE isolates to enfuvirtide. Subtype B′ isolates with a unique polymorphism site of F317W in V3 loop, were about 4- to 5-fold more sensitive than CRF07_BC and CRF01_AE isolates to maraviroc and TAK779. AMD3100 at the concentration as high as 5 µM exhibited no significant inhibitory activity against any of the isolates tested. Conclusion Our results suggest that there are significant differences in baseline susceptibility to HIV entry inhibitors among the predominant HIV-1 subtypes in China and the differences may partly result from the naturally occurring polymorphisms in these subtypes. This study provides useful information for rational design of optimal therapeutic regimens for HIV-1-infected patients in China.
Collapse
Affiliation(s)
- Xiaoling Yu
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Yuan
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
| | - Yang Huang
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
| | - Weisi Xu
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
| | - Zhiming Fang
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiming Shao
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
- * E-mail: (LM); (SJ); (YS)
| | - Shibo Jiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- Key Laboratory of Medical Molecular Virology of MOE/MOH and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (LM); (SJ); (YS)
| | - Liying Ma
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
- * E-mail: (LM); (SJ); (YS)
| |
Collapse
|
4
|
Isitman G, Chung AW, Navis M, Kent SJ, Stratov I. Pol as a target for antibody dependent cellular cytotoxicity responses in HIV-1 infection. Virology 2011; 412:110-6. [PMID: 21269655 DOI: 10.1016/j.virol.2010.12.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/28/2010] [Accepted: 12/22/2010] [Indexed: 11/29/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) may assist in preventing HIV or delaying disease progression. Most prior studies have analysed Env-specific ADCC responses. We hypothesized that effective ADCC-based immunity may target conserved internal viral proteins such as Pol. We analysed the ability overlapping Pol peptides to induce activation of NK cells via ADCC. We prospectively studied ADCC responses in 83 HIV+ subjects followed for 3 years. Pol peptides were commonly targeted by ADCC responses in these chronically infected subjects (in 32 of the 83 subjects). However, Pol-specific ADCC responses declined over time and did not correlate with delayed HIV progression, measured by either baseline CD4 T cells, CD4 T cell loss over time, baseline viral load or the need to start antiretroviral therapy. Although Pol is frequently targeted by ADCC in HIV+ subjects, the strength or specificity of Pol-specific ADCC responses needs to be modulated to be effective in delaying HIV progression.
Collapse
Affiliation(s)
- Gamze Isitman
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
5
|
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) is one of the leading causes of death worldwide. Although the combination therapies of highly active antiretroviral therapy (HAART) have significantly contributed to virological suppression, improved immune function and quality of life, issues such as tolerability, drug-drug interactions and cross-resistance amongst members of a particular drug class still pose a significant barrier to long-term successful treatment. There is a constant need for newer anti HIV drugs with increased potency and improved pharmacokinetic properties either in the existing classes or drugs from new classes that target several new steps in HIV replication cycle. AREAS COVERED IN THIS REVIEW The authors have discussed newer antiretroviral drugs belonging to second-generation nucleoside analog reverse transcriptase inhibitors (amdoxovir, elvucitabine, apricitabine, racivir), non-nucleoside analog reverse transcriptase inhibitors (etravirine, rilpivirine), protease inhibitors (darunavir, tipranavir) as well as emerging new classes, i.e., fusion inhibitors (enfuvirtide, sifuvirtide), CCR5 inhibitors (maraviroc, vicriviroc, PRO 140, PRO 542), CD4-receptor inhibitors (ibalizumab), integrase inhibitors (raltegravir, elvitegravir, GSK-1349572), maturation inhibitors (bevirimat), cobicistat (pharmacoenhancer), lens epithelium-derived growth factor inhibitors and capsid assembly inhibitors. WHAT THE READER WILL GAIN The reader will gain an understanding of the mechanism of action, mechanism of resistance, stages of development and important clinical trials related to the newer antiretroviral drugs and future potential of these drugs. TAKE HOME MESSAGE The initial clinical trial data of these newer drugs are very encouraging for the long-term successful control of HIV in both treatment-naïve and treatment-experienced patients.
Collapse
Affiliation(s)
- Raktim Kumar Ghosh
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India.
| | | | | |
Collapse
|