1
|
Lau B, Kerr K, Camiolo S, Nightingale K, Gu Q, Antrobus R, Suárez NM, Loney C, Stanton RJ, Weekes MP, Davison AJ. Human Cytomegalovirus RNA2.7 Is Required for Upregulating Multiple Cellular Genes To Promote Cell Motility and Viral Spread Late in Lytic Infection. J Virol 2021; 95:e0069821. [PMID: 34346763 PMCID: PMC8475523 DOI: 10.1128/jvi.00698-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) to cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the 10 most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts lived longer in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long noncoding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
2
|
Polymorphisms and features of cytomegalovirus UL144 and UL146 in congenitally infected neonates with hepatic involvement. PLoS One 2017; 12:e0171959. [PMID: 28222150 PMCID: PMC5319779 DOI: 10.1371/journal.pone.0171959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/28/2017] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus is a significant agent of hepatic involvement in neonates. In this study, we investigated the polymorphisms and features of the viral genes UL144 and UL146 as well as their significance to congenital hepatic involvement. In 79 neonates with congenital cytomegalovirus infection and hepatic involvement, full length UL144 and UL146 were successfully amplified in 73.42% and 60.76% of cases, respectively. Sequencing indicated that both genes were hypervariable. Notably, UL144 genotype B was highly associated with aspartate aminotransferase (P = 0.028) and lactate dehydrogenase (P = 0.046). Similarly, UL146 genotype G1 and G13 were significantly associated with CMV IgM (P = 0.026), CMV IgG (P = 0.034), alanine aminotransferase (P = 0.019), and aspartate aminotransferase (P = 0.032). In conclusion, dominant UL144 (genotype B) and UL146 (genotype G1 and G13) genotypes are associated with elevated levels of enzymes and CMV IgM and IgG of cytomegalovirus infection.
Collapse
|
3
|
Lu Y, Ma Y, Liu Z, Han L, Gao S, Zheng B, Liu C, Qi Y, Sun Z, Huang Y, Ruan Q. A cluster of 3' coterminal transcripts from US12-US17 locus of human cytomegalovirus. Virus Genes 2016; 52:334-45. [PMID: 26931512 DOI: 10.1007/s11262-016-1308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/20/2016] [Indexed: 01/27/2023]
Abstract
Among all the human cytomegalovirus (HCMV) gene families, US12 family is relatively undefined in their transcriptional profile and biological functions. In this study, the transcription pattern and characteristics of HCMV US12-US17 gene region were studied extensively. Twenty-three clones harboring US12 cDNA sequence were screened out from a late cDNA library of an HCMV clinical isolate, Han. Using a set of US12-US17 gene-specific probes, six transcripts from US12-US17 locus were detected by northern blot at late kinetics of the clinical isolate. One additional transcript was found in late RNA of HCMV strain AD169. No evidence showing these transcripts contain introns by reverse transcription PCR. 3' and 5' termini of these transcripts were confirmed by Rapid Amplification of cDNA Ends. A novel protein-coding region was predicted in the shorter US14 transcript with an alternative in-frame 5' translation initiation site compared to that of the previously predicted US14 ORF. Our findings demonstrate the existence of a cluster of 3' coterminal unspliced transcripts with distinct 5' transcriptional initiation sites originated from US12-US17 gene region in the late infection phase of an HCMV clinical strain.
Collapse
Affiliation(s)
- Ying Lu
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
- Department of Pathogen Biology, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, 121000, China
| | - Yanping Ma
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China.
| | - Zhongyang Liu
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Liying Han
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Shuang Gao
- The Clinical Laboratory, Shenyang Women's and Children's Hospital, Shenyang, Liaoning, 110014, China
| | - Bo Zheng
- The Pediatric Department, Shenyang Women's and Children's Hospital, Shenyang, Liaoning, 110014, China
| | - Chang Liu
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Ying Qi
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Zhengrong Sun
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Yujing Huang
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China
| | - Qiang Ruan
- Virus Laboratory, Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, 121000, China.
| |
Collapse
|
4
|
Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, Kim D, Baek D, Ahn K. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 2013; 13:678-90. [PMID: 23768492 DOI: 10.1016/j.chom.2013.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
Virulence of human cytomegalovirus (HCMV) clinical isolates correlates with carriage of a 15 kb segment in the UL/b' region of the viral genome, which is absent from attenuated strains. The mechanisms by which this segment contributes to HCMV virulence remain obscure. We observed that intergenic RNA sequences within the 15 kb segment function as a microRNA (miRNA) decay element (miRDE) and direct the selective, sequence-specific turnover of mature miR-17 and miR-20a encoded within the host miR-17-92 cluster. Unlike canonical miRNA-mRNA interactions, the miRNA-miRDE interactions did not repress miRDE expression. miRNA binding site mutations retargeted miRDE to other miR-17-92 cluster miRNAs, which are otherwise resistant to miRDE-mediated decay. miRDE function was required to accelerate virus production in the context of lytic HCMV infection. These results indicate a role for viral noncoding RNA in regulating cellular miRNAs during HCMV pathogenesis and suggest that noncoding RNAs may play a role in mature miRNA turnover.
Collapse
Affiliation(s)
- Sanghyun Lee
- National Creative Research Initiatives Center for Antigen Presentation, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ma Y, Wang N, Li M, Gao S, Wang L, Zheng B, Qi Y, Ruan Q. Human CMV transcripts: an overview. Future Microbiol 2012; 7:577-93. [PMID: 22568714 DOI: 10.2217/fmb.12.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human CMV (HCMV) genome consists of an approximately 230-kb dsDNA and is predicted to contain over 165 open reading frames. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV was first available in 1991, the precise number and nature of viral genes and gene products are still unclear. Fewer than 100 predicted genes have been convincingly elucidated with respect to their expression patterns, transcript structure and transcription characteristics. The high gene number of HCMV creates a crowded genome with many overlapping transcriptional units. 3´- or 5´-coterminal overlapping polycistronic transcripts could use a common promoter element or a poly-A signal. 3´-coterminal monocistronic transcripts could encode 'nested' open reading frames, which possess different initiation but the same termination sites. As a virus with eukaryotic cells as the host, HCMV has the capacity to splice out introns during transcription. Major alternately spliced mRNA species of HCMV originate primarily, but not exclusively, from the immediate early gene regions. Alternate splicing patterns of the mRNAs could encode a number of gene products with different sizes. In recent years, some antisense and noncoding transcripts of HCMV have been reported. These RNAs probably have functions in genomic replication or the regulation of gene expression.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning of PR China, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang N, Ma Y, Sun Z, Qi Y, Ji Y, He R, Li M, Ruan Q. Transcriptional features and transcript structure of UL145 in different strains of human cytomegalovirus. J Med Virol 2011; 83:2151-6. [DOI: 10.1002/jmv.22241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|