1
|
Hesterman M, Furrer S, Fallon B, Weller M. Analysis of Hepatitis D Virus in Minor Salivary Gland of Sjögren's Disease. J Dent Res 2023; 102:1272-1279. [PMID: 37575047 PMCID: PMC10626587 DOI: 10.1177/00220345231186394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Hepatitis delta virus (HDV) has been detected in the minor salivary gland (MSG) tissue of Sjögren's disease (SjD) patients in the absence of a hepatitis B virus (HBV) coinfection. Previous research has shown that HDV antigen (HDAg) expression can trigger an SjD-like phenotype in vivo, demonstrating a potential cause-and-effect relationship. We hypothesize that if HDV plays a role in the development of SjD, then HDV profiles may be correlated with disease manifestations. This retrospective study characterized HDV in a cohort of 48 SjD MSG samples collected between 2014 and 2021. Analyses of HDAg expression, including cell type and subcellular localization, in situ hybridization of HDV RNA, and comparative analyses with associated SjD and viral hepatitis clinical features, were conducted. HDAg was detected in MSG acinar, ductal, myoepithelial, and adipose cells and localized with the nuclei, cytoplasm, and mitochondria. In situ hybridization detected HDV genomic RNA localization in the MSG nuclei. A significant negative correlation was found between HDAg intensity and focal lymphocytic inflammation and in patients with both anti-SSA/Ro-52 and anti-SSA/Ro-60. In analyzing autoimmune disease comorbidities with SjD, it was found that SjD patients diagnosed with autoimmune thyroiditis and/or hypothyroidism were significantly more represented in the high HDAg intensity group compared to the negative and moderate HDAg intensity groups. No significant associations were detected between MSG-localized HDAg and liver enzymes or an evident HBV coinfection. This study has further confirmed that there is a nonhepatic reservoir for chronic HDV persistence in SjD-affected salivary gland tissue in a third independent SjD patient cohort. In addition, this study describes the unique colocalization of HDAg with mitochondria. The detection of HDV antigen and sequence within SjD-affected salivary gland tissue, and in the absence of an evident current or past HBV coinfection, warrants further investigation.
Collapse
Affiliation(s)
- M.C. Hesterman
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - S.V. Furrer
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - B.S. Fallon
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - M.L. Weller
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
3
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Tang YS, So WK, Ng KLA, Mok KPC, Shaw PC. Interaction of Influenza A Nucleoprotein with Host hnRNP-C Is Implicated in Viral Replication. Int J Mol Sci 2022; 23:13613. [PMID: 36362400 PMCID: PMC9655074 DOI: 10.3390/ijms232113613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 08/18/2023] Open
Abstract
The host interactome of influenza viral proteins is ever-expanding. In this work, we report the identification of host heterogeneous nuclear ribonucleoprotein C (hnRNP-C) as an interacting partner of influenza A virus nucleoprotein (NP). We confirmed that this interaction exists across different influenza A subtypes and strains. Using biochemical methods, we determined that hnRNP-C interacts with NP via its C-terminal auxiliary domain. Further, we determined that the hnRNP-C is a negative regulator of influenza viral growth. Its interaction with NP is implicated in the promotion of host cell apoptosis during viral infection. It is the first time that the interaction between influenza nucleoprotein and host heterogeneous nuclear ribonucleoprotein C is characterized in detail. Overall, these findings not only characterize the interaction between NP and its host interacting partner hnRNP-C but also clarify the functional significance of this interaction. This work may lead to a new therapeutic target for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yun-Sang Tang
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kin So
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Leung Andy Ng
- Office of University General Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Pun Chris Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
The Network of Interactions between the Porcine Epidemic Diarrhea Virus Nucleocapsid and Host Cellular Proteins. Viruses 2022; 14:v14102269. [PMID: 36298827 PMCID: PMC9611260 DOI: 10.3390/v14102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Host–virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein–protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.
Collapse
|
6
|
Interaction Network of Porcine Circovirus Type 3 and 4 Capsids with Host Proteins. Viruses 2022; 14:v14050939. [PMID: 35632681 PMCID: PMC9144384 DOI: 10.3390/v14050939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
An extensive understanding of the interactions between host cellular and viral proteins provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4 (PCV4) have recently been identified as viruses that can potentially damage the swine industry. Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were characterized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for PCV3 Cap and 206 for PCV4 Cap) differed. A protein-protein interaction network was constructed, and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the interaction network provided helpful information to support further research into the underlying mechanisms of PCV3 and PCV4 infection.
Collapse
|
7
|
Liu W, Zhong C, Lv D, Tang M, Xie F. N6-Methyladenosine RNA Methylation Regulators Have Clinical Prognostic Values in Hepatocellular Carcinoma. Front Genet 2020; 11:863. [PMID: 32903675 PMCID: PMC7438782 DOI: 10.3389/fgene.2020.00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Although it is widely accepted that N6-methyladenosine (m6A) RNA methylation plays critical roles in tumorigenesis and progression, the values of m6A modification are less known in hepatocellular carcinoma. The major purpose of our current studies is to investigate the role of m6A regulators in hepatocellular carcinoma and whether it can affect the prognosis of hepatocellular carcinoma. Here we demonstrate that most of the m6A regulators are highly expressed in hepatocellular carcinoma. Furthermore, we cluster hepatocellular carcinoma into two subgroups (cluster 1/2) by applying consensus clustering to m6A regulators. Compared with the cluster 1 subgroup, the cluster 2 subgroup was significantly associated with a higher pathological grade and survival. Based on these findings, we reveal a risk signature by using three m6A regulators, which are not only an independent prognostic marker but also a predictor of the clinicopathological features in hepatocellular carcinoma. In conclusion, m6A regulators are crucial participants in the malignant progression of hepatocellular carcinoma and are potential targets for prognosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Cuiqing Zhong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mengjie Tang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Xie
- Department of Pharmacy, The Nanshan District Maternity and Child Healthcare Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
8
|
Zhou J, Li H, Yu T, Li J, Dong W, Ojha NK, Jin Y, Gu J, Zhou J. Protein Interactions Network of Porcine Circovirus Type 2 Capsid With Host Proteins. Front Microbiol 2020; 11:1129. [PMID: 32582087 PMCID: PMC7283462 DOI: 10.3389/fmicb.2020.01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Virus-host interaction is a tug of war between pathogenesis and immunity, followed by either activating the host immune defense system to eliminate virus or manipulating host immune control mechanisms to survive and facilitate virus propagation. Comprehensive knowledge of interactions between host and viral proteins might provide hints for developing novel antiviral strategies. To gain a more detailed knowledge of the interactions with porcine circovirus type 2 capsid protein, we employed a coimmunoprecipitation combined with liquid chromatography mass spectrometry (LC-MS) approach and 222 putative PCV2 Cap-interacting host proteins were identified in the infected porcine kidney (PK-15) cells. Further, a protein-protein interactions (PPIs) network was plotted, and the PCV2 Cap-interacting host proteins were potentially involved in protein binding, DNA transcription, metabolism and innate immune response based on the gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes database enrichment. Verification in vitro assay demonstrated that eight cellular proteins, namely heterogeneous nuclear ribonucleoprotein C, nucleophosmin-1, DEAD-box RNA helicase 21, importin β3, eukaryotic translation initiation factor 4A2, snail family transcriptional repressor 2, MX dynamin like GTPase 2, and intermediate chain 1 interacted with PCV2 Cap. Thus, this work effectively provides useful protein-related information to facilitate further investigation of the underlying mechanism of PCV2 infection and pathogenesis.
Collapse
Affiliation(s)
- Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Hanying Li
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Tianqi Yu
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jiarong Li
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Nishant Kumar Ojha
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Tavanez JP, Caetano R, Branco C, Brito IM, Miragaia-Pereira A, Vassilevskaia T, Quina AS, Cunha C. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes. FEBS J 2020; 287:3719-3732. [PMID: 32352217 DOI: 10.1111/febs.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis delta virus (HDV) is the agent responsible for the most severe form of human viral hepatitis. The HDV genome consists of a single-stranded circular RNA molecule that encodes for one single protein, the delta antigen. Given its simplicity, HDV must make use of several host cellular proteins to accomplish its life cycle processes, including transcription, replication, post-transcriptional, and post-translational modifications. Consequently, identification of the interactions established between HDV components and host proteins assumes a pivotal interest in the search of novel therapeutic targets. Here, we used the yeast three-hybrid system to screen a human liver cDNA library to identify host proteins that interact with the HDV genomic RNA. One of the identified proteins corresponded to the splicing factor SF3B155, a component of the U2snRNP complex that is essential for the early recognition of 3' splice sites in the pre-mRNAs of human genes. We show that the interaction between the HDV genomic RNA and SF3B155 occurs in vivo and that the expression of HDV promotes changes in splicing of human genes whose alternative splicing is SF3B155-dependent. We further show that expression of HDV triggers alterations in several constitutive and alternative splicing events in the tumor suppressor RBM5 transcript, with consequent reduction of its protein levels. This is the first description that HDV expression promotes changes in the splicing of human genes, and we suggest that the HDV-induced alternative splicing changes, through SF3B155 sequester, may contribute for the early progression to hepatocellular carcinoma characteristic of HDV-infected patients.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Rafael Caetano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Cristina Branco
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Inês Margarida Brito
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Miragaia-Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Tatiana Vassilevskaia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Sofia Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| |
Collapse
|
10
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
11
|
Abraham R, Singh S, Nair SR, Hulyalkar NV, Surendran A, Jaleel A, Sreekumar E. Nucleophosmin (NPM1)/B23 in the Proteome of Human Astrocytic Cells Restricts Chikungunya Virus Replication. J Proteome Res 2017; 16:4144-4155. [PMID: 28959884 DOI: 10.1021/acs.jproteome.7b00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.
Collapse
Affiliation(s)
- Rachy Abraham
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sreeja R Nair
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Neha Vijay Hulyalkar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Arun Surendran
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Abdul Jaleel
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| |
Collapse
|
12
|
Alves C, Cheng H, Tavanez JP, Casaca A, Gudima S, Roder H, Cunha C. Structural and nucleic acid binding properties of hepatitis delta virus small antigen. World J Virol 2017; 6:26-35. [PMID: 28573087 PMCID: PMC5437381 DOI: 10.5501/wjv.v6.i2.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.
METHODS Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.
RESULTS Results showed that the truncated ∆60HDAg protein is intrinsically disordered but compact, whereas the RNA binding domain, comprising residues 94-146, adopts a dynamic helical conformation. We also found that ∆60HDAg fails to multimerize but still contains nucleic acid binding activity, indicating that multimerization is not essential for nucleic acid binding. Moreover, in agreement with what has been previously reported for full-length protein, no apparent specificity was found for the truncated protein regarding nucleic acid binding.
CONCLUSION Taken together these results allowed concluding that ∆60HDAg is intrinsically disordered but compact; ∆60HDAg is not a multimer but is still capable of nucleic acid binding albeit without apparent specificity.
Collapse
|
13
|
Nguyen HM, Sy BT, Trung NT, Hoan NX, Wedemeyer H, Velavan TP, Bock CT. Prevalence and genotype distribution of hepatitis delta virus among chronic hepatitis B carriers in Central Vietnam. PLoS One 2017; 12:e0175304. [PMID: 28403190 PMCID: PMC5389633 DOI: 10.1371/journal.pone.0175304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis D virus (HDV) infection plays an important role in liver diseases. However, the molecular epidemiology and impact of HDV infection in chronic hepatitis B (CHB) remain uncertain in Vietnam. This cross-sectional study aimed to investigate the prevalence and genotype distribution of HDV among HBsAg-positive patients in Central Vietnam. 250 CHB patients were tested for HDV using newly established HDV-specific RT-PCR techniques. HDV genotypes were determined by direct sequencing. Of the 250 patients 25 (10%) had detectable copies of HDV viral RNA. HDV-2 was predominant (20/25; 80%) followed by HDV-1 (5/25; 20%). Proven HDV genotypes share the Asian nomenclature. Chronic hepatitis B patients with concomitant HDV-1 showed higher HBV loads as compared to HDV-2 infected patients [median log10 (HBV-DNA copies/ml): 8.5 vs. 4.4, P = 0.036]. Our findings indicate that HDV infection is highly prevalent and HDV-2 is predominant in Central Vietnam. The data will add new information to the management of HBsAg-positive patients in a highly HBV endemic region to in- or exclude HDV infection in terms of diagnostic and treatment options.
Collapse
Affiliation(s)
- Hung Minh Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- * E-mail: (CTB); (HMN)
| | - Bui Tien Sy
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Thanh Trung
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Heiner Wedemeyer
- German Center for Infection Research, Department for Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Thirumalaisamy P. Velavan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- * E-mail: (CTB); (HMN)
| |
Collapse
|
14
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
15
|
Dhanjal S, Kajitani N, Glahder J, Mossberg AK, Johansson C, Schwartz S. Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing. J Biol Chem 2015; 290:13354-71. [PMID: 25878250 DOI: 10.1074/jbc.m115.638098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/09/2023] Open
Abstract
In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.
Collapse
Affiliation(s)
- Soniya Dhanjal
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Naoko Kajitani
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Jacob Glahder
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Ann-Kristin Mossberg
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Cecilia Johansson
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Stefan Schwartz
- From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
16
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Abbas Z, Afzal R. Life cycle and pathogenesis of hepatitis D virus: A review. World J Hepatol 2013; 5:666-675. [PMID: 24409335 PMCID: PMC3879688 DOI: 10.4254/wjh.v5.i12.666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/06/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus which requires the help of hepatitis B virus (HBV) virus for its replication and assembly of new virions. HDV genome contains only one actively transcribed open reading frame which encodes for two isoforms of hepatitis delta antigen. Post-translational modifications of small and large delta antigens (S-HDAg and L-HDAg) involving phosphorylation and isoprenylation respectively confer these antigens their specific properties. S-HDAg is required for the initiation of the viral genome replication, whereas L-HDAg serves as a principal inhibitor of replication and is essential for the assembly of new virion particles. Immune mediation has usually been implicated in HDV-associated liver damage. The pathogenesis of HDV mainly involves interferon-α signaling inhibition, HDV-specific T-lymphocyte activation and cytokine responses, and tumor necrosis factor-alpha and nuclear factor kappa B signaling. Due to limited protein coding capacity, HDV makes use of host cellular proteins to accomplish their life cycle processes, including transcription, replication, post-transcriptional and translational modifications. This intimate host-pathogen interaction significantly alters cell proteome and is associated with an augmented expression of pro-inflammatory, growth and anti-apoptotic factors which explains severe necroinflammation and increased cell survival and an early progression to hepatocellular carcinoma in HDV patients. The understanding of the process of viral replication, HBV-HDV interactions, and etio-pathogenesis of the severe course of HDV infection is helpful in identifying the potential therapeutic targets in the virus life cycle for the prophylaxis and treatment of HDV infection and complications.
Collapse
|
18
|
Hepatitis delta virus: a peculiar virus. Adv Virol 2013; 2013:560105. [PMID: 24198831 PMCID: PMC3807834 DOI: 10.1155/2013/560105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is distributed worldwide and related to the most severe form of viral hepatitis. HDV is a satellite RNA virus dependent on hepatitis B surface antigens to assemble its envelope and thus form new virions and propagate infection. HDV has a small 1.7 Kb genome making it the smallest known human virus. This deceivingly simple virus has unique biological features and many aspects of its life cycle remain elusive. The present review endeavors to gather the available information on HDV epidemiology and clinical features as well as HDV biology.
Collapse
|
19
|
Alves C, Cunha C. Order and disorder in viral proteins: new insights into an old paradigm. Future Virol 2012. [DOI: 10.2217/fvl.12.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conventional dogma stating that proteins must fold into a well-defined structure in order to display biological function is being challenged everyday as new data emerge on the relevance of disordered regions and intrinsically disordered proteins. Viral proteins in particular can benefit greatly from the conformational flexibility granted by partially folded or unfolded protein segments. It enables them to adapt to hostile and changing environmental conditions, interact with the required host machinery while evading host defence mechanisms and tolerate the high mutation rates viral genomes are prone to. In this review, we will summarize and discuss the importance of the recent research field of protein disorder that is proving vital to gain better understanding of the roles and functions of viral proteins.
Collapse
Affiliation(s)
- Carolina Alves
- Medical Microbiology Unit, Center for Malaria & Tropical Diseases, Institute of Hygiene & Tropical Medicine, Nova University, Lisbon, Portugal
| | - Celso Cunha
- Medical Microbiology Unit, Center for Malaria & Tropical Diseases, Institute of Hygiene & Tropical Medicine, Nova University, Lisbon, Portugal
| |
Collapse
|