1
|
Feng C, Guo X, Gu T, Hua Y, Zhuang X, Zhang K. Generation of a Triple-Shuttling Vector and the Application in Plant Plus-Strand RNA Virus Infectious cDNA Clone Construction. Int J Mol Sci 2023; 24:ijms24065477. [PMID: 36982550 PMCID: PMC10056883 DOI: 10.3390/ijms24065477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Infectious cloning of plant viruses is a powerful tool for studying the reverse genetic manipulation of viral genes in virus–host plant interactions, contributing to a deeper understanding of the life history and pathogenesis of viruses. Yet, most of the infectious clones of RNA virus constructed in E. coli are unstable and toxic. Therefore, we modified the binary vector pCass4-Rz and constructed the ternary shuttle vector pCA4Y. The pCA4Y vector has a higher copy number in the E. coli than the conventional pCB301 vector, can obtain a high concentration of plasmid, and is economical and practical, so it is suitable for the construction of plant virus infectious clones in basic laboratories. The constructed vector can be directly extracted from yeast and transformed into Agrobacterium tumefaciens to avoid toxicity in E. coli. Taking advantage of the pCA4Y vector, we established a detailed large and multiple DNA HR-based cloning method in yeast using endogenous recombinase. We successfully constructed the Agrobacterium-based infectious cDNA clone of ReMV. This study provides a new choice for the construction of infectious viral clones.
Collapse
Affiliation(s)
- Chenwei Feng
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao Guo
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianxiao Gu
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yanhong Hua
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinjian Zhuang
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture, Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kun Zhang
- Department of Plant Pathology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture, Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High, Technology for Plant Protection, Guangzhou 510640, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: or ; Tel.: +86-182-5274-7896
| |
Collapse
|
2
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Tsarmpopoulos I, Marais A, Faure C, Theil S, Candresse T. A new potyvirus from hedge mustard (Sisymbrium officinale (L.) Scop.) sheds light on the evolutionary history of turnip mosaic virus. Arch Virol 2022; 168:14. [PMID: 36576617 DOI: 10.1007/s00705-022-05682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022]
Abstract
A novel potyvirus was identified in symptomatic hedge mustard (Sisymbrium officinale (L.) Scop.) and wild radish (Raphanus raphanistrum L.) in France. The nearly complete genome sequence of hedge mustard mosaic virus (HMMV) was determined, demonstrating that it belongs to a sister species to turnip mosaic virus (TuMV). HMMV readily infected several other members of the family Brassicaceae, including turnip, shepherd's purse (Capsella bursa-pastoris), and arabidopsis. The identification of HMMV as a Brassicaceae-infecting virus closely related to TuMV leads us to question the current scenario of TuMV evolution and suggests a possible alternative one in which transition from a monocot-adapted ancestral lifestyle to a Brassicaceae-adapted one could have occurred earlier than previously recognized.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.all OK.
Collapse
Affiliation(s)
- Iason Tsarmpopoulos
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Chantal Faure
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sébastien Theil
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
- INRAE, UMRF, Aurillac, France
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France.
| |
Collapse
|
4
|
Candresse T, Svanella-Dumas L, Marais A, Depasse F, Faure C, Lefebvre M. Identification of Seven Additional Genome Segments of Grapevine-Associated Jivivirus 1. Viruses 2022; 15:39. [PMID: 36680079 PMCID: PMC9862270 DOI: 10.3390/v15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Jiviruses are a group of recently described viruses characterized with a tripartite genome and having affinities with Virgaviridae (RNA1 and 2) and Flaviviridae (RNA3). Using a combination of high-throughput sequencing, datamining and RT-PCR approaches, we demonstrate here that in grapevine samples infected by grapevine-associated jivivirus 1 (GaJV-1) up to 7 additional molecules can be consistently detected with conserved 5' and 3' non-coding regions in common with the three previously identified GaJV-1 genomic RNAs. RNA4, RNA5, RNA6, RNA7, RNA8 and RNA10, together with a recombinant RNArec7-8, are all members of a family sharing a previously non recognized conserved protein domain, while RNA9 is part of a distinct family characterized by another conserved motif. Datamining of pecan (Carya illinoinensis) public transcriptomic data allowed the identification of two further jiviviruses and the identification of supplementary genomic RNAs with homologies to those of GaJV-1. Taken together, these results reshape our vision of the divided genome of jiviviruses and raise novel questions about the function(s) of the proteins encoded by jiviviruses supplementary RNAs.
Collapse
Affiliation(s)
- Thierry Candresse
- INRAE, UMR BFP, University of Bordeaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France
| | | | | | | | | | | |
Collapse
|
5
|
Huang WF, Li R, Jin L, Huang S. Procedures and potential pitfalls for constructing a bee-infecting RNA virus clone. FRONTIERS IN INSECT SCIENCE 2022; 2:908702. [PMID: 38468785 PMCID: PMC10926416 DOI: 10.3389/finsc.2022.908702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 03/13/2024]
Abstract
Viruses are factors that can fluctuate insect populations, including honey bees. Most honey bee infecting viruses are single positive-stranded RNA viruses that may not specifically infect honey bees and can be hazardous to other pollinator insects. In addition, these viruses could synergize with other stressors to worsen the honey bee population decline. To identify the underlying detailed mechanisms, reversed genetic studies with infectious cDNA clones of the viruses are necessary. Moreover, an infectious cDNA clone can be applied to studies as an ideal virus isolate that consists of a single virus species with a uniform genotype. However, only a few infectious cDNA clones have been reported in honey bee studies since the first infectious cDNA clone was published four decades ago. This article discusses steps, rationales, and potential issues in bee-infecting RNA virus cloning. In addition, failed experiences of cloning a Deformed wing virus isolate that was phylogenetically identical to Kakugo virus were addressed. We hope the information provided in this article can facilitate further developments of reverse-genetic studies of bee-infecting viruses to clarify the roles of virus diseases in the current pollinator declines.
Collapse
Affiliation(s)
- Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | | |
Collapse
|
6
|
Umber M, Filloux D, Svanella-Dumas L, Bonheur L, Acina-Mambole I, Gomez RM, Faure C, Anzala F, Pavis C, Roumagnac P, Marais A, Theil S, Candresse T, Teycheney PY. Host range and molecular variability of the sadwavirus dioscorea mosaic associated virus. Arch Virol 2022; 167:917-922. [PMID: 35107668 DOI: 10.1007/s00705-022-05379-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
Dioscorea mosaic associated virus (DMaV) is a member of the genus Sadwavirus, family Secoviridae, that is associated with mosaic symptoms in Dioscorea rotundata in Brazil. The genome of a DMaV isolate detected in D. trifida in Guadeloupe was sequenced by high-throughput sequencing. Using an RT-PCR-based detection assay, we found that DMaV infects D. alata, D. bulbifera, D. cayenensis-rotundata, D. esculenta, and D. trifida accessions conserved in Guadeloupe and Côte d'Ivoire and displays a very high level of molecular diversity in a relatively small region of the genome targeted by the assay. We also provide evidence that DMaV is also present in D. rotundata in Benin and in D. alata in Nigeria.
Collapse
Affiliation(s)
- Marie Umber
- INRAE, UR1321 ASTRO Agrosystèmes tropicaux, 97170, Petit-Bourg, Guadeloupe, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090, Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Laurence Svanella-Dumas
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Lydiane Bonheur
- CIRAD, UMR AGAP Institut, Station de Neufchâteau, Sainte-Marie, 97130, Capesterre Belle-Eau, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 97130, Capesterre Belle-Eau, France
| | - Isabelle Acina-Mambole
- CIRAD, UMR AGAP Institut, Station de Neufchâteau, Sainte-Marie, 97130, Capesterre Belle-Eau, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 97130, Capesterre Belle-Eau, France
| | - Rose-Marie Gomez
- INRAE, UR1321 ASTRO Agrosystèmes tropicaux, 97170, Petit-Bourg, Guadeloupe, France
| | - Chantal Faure
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Fabiola Anzala
- INRAE, UR1321 ASTRO Agrosystèmes tropicaux, 97170, Petit-Bourg, Guadeloupe, France
| | - Claudie Pavis
- INRAE, UR1321 ASTRO Agrosystèmes tropicaux, 97170, Petit-Bourg, Guadeloupe, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090, Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Sébastien Theil
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMY, F-97410, Saint Pierre, La Réunion, France. .,UMR PVBMT, Université de la Réunion, F-97410, Saint Pierre, La Réunion, France.
| |
Collapse
|
7
|
Construction of Infectious Clones of Begomoviruses: Strategies, Techniques and Applications. BIOLOGY 2021; 10:biology10070604. [PMID: 34209952 PMCID: PMC8301103 DOI: 10.3390/biology10070604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Begomovirus has a wide host range and threatens a significant amount of economic damage to many important crops such as tomatoes, beans, cassava, squash and cotton. There are many efforts directed at controlling this disease including the use of insecticides to control the insect vector as well as screening the resistant varieties. The use of synthetic virus or infectious clones approaches has allowed plant virologists to characterize and exploit the genome virus at the molecular and biological levels. By exploiting the DNA of the virus using the infectious clones strategy, the viral genome can be manipulated at specific regions to study functional genes for host–virus interactions. Thus, this review will provide an overview of the strategy to construct infectious clones of Begomovirus. The significance of established infectious clones in Begomovirus study will also be discussed. Abstract Begomovirus has become a potential threat to the agriculture sector. It causes significant losses to several economically important crops. Given this considerable loss, the development of tools to study viral genomes and function is needed. Infectious clones approaches and applications have allowed the direct exploitation of virus genomes. Infectious clones of DNA viruses are the critical instrument for functional characterization of the notable and newly discovered virus. Understanding of structure and composition of viruses has contributed to the evolution of molecular plant pathology. Therefore, this review provides extensive guidelines on the strategy to construct infectious clones of Begomovirus. Also, this technique’s impacts and benefits in controlling and understanding the Begomovirus infection will be discussed.
Collapse
|
8
|
Villamor DEV, Pillai SS, Eastwell KC. Systemic infection and symptom development of agro-inoculated cDNA clone of cherry rusty mottle-associated virus in sweet cherry (Prunus avium). Virus Res 2021; 296:198330. [PMID: 33556414 DOI: 10.1016/j.virusres.2021.198330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/24/2021] [Indexed: 01/25/2023]
Abstract
Cherry rusty mottle-associated virus (CRMaV), which belongs the genus Robigovirus of the family Betaflexiviridae, is strongly associated with cherry rusty mottle disease of sweet cherry, Prunus avium. Here, we report on the successful development of an Agrobacterium-based inoculation system for a cloned CRMaV cDNA construct. Agro-inoculation of virus-free cherry rootstock 'Krymsk6' [P. cerasus x (P. cerasus x P. maackii)] resulted in the development of chlorotic yellow mottle symptoms on systemic leaves beginning at 50 days post inoculation. The presence of CRMaV in 'Krymsk6' agro-inoculated plants was confirmed by RT-PCR and ELISA. Subsequently, CRMaV from agro-inoculated 'Krymsk6' was graft-transmissible onto virus-free sweet cherry rootstock P. avium 'Mazzard' as evidenced by the production of typical cherry rusty mottle symptoms beginning at 35 days post grafting, and further confirmed by western blotting and RT-PCR. These results showed conclusively that CRMaV is the causal agent of cherry rusty mottle disease in sweet cherry. The reverse genetic system presented in this study can be used as a tool to investigate the molecular biology of CRMaV and also a template for infectious clone development for other viruses in the genus Robigovirus.
Collapse
Affiliation(s)
- D E V Villamor
- Washington State University, Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, United States.
| | - S S Pillai
- Washington State University, Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, United States
| | - K C Eastwell
- Washington State University, Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, United States
| |
Collapse
|
9
|
Zhao M, García B, Gallo A, Tzanetakis IE, Simón-Mateo C, García JA, Pasin F. Home-made enzymatic premix and Illumina sequencing allow for one-step Gibson assembly and verification of virus infectious clones. PHYTOPATHOLOGY RESEARCH 2020; 2:36. [PMID: 33768973 PMCID: PMC7990137 DOI: 10.1186/s42483-020-00077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
An unprecedented number of viruses have been discovered by leveraging advances in high-throughput sequencing. Infectious clone technology is a universal approach that facilitates the study of biology and role in disease of viruses. In recent years homology-based cloning methods such as Gibson assembly have been used to generate virus infectious clones. We detail herein the preparation of home-made cloning materials for Gibson assembly. The home-made materials were used in one-step generation of the infectious cDNA clone of a plant RNA virus into a T-DNA binary vector. The clone was verified by a single Illumina reaction and a de novo read assembly approach that required no primer walking, custom primers or reference sequences. Clone infectivity was finally confirmed by Agrobacterium-mediated delivery to host plants. We anticipate that the convenient home-made materials, one-step cloning and Illumina verification strategies described herein will accelerate characterization of viruses and their role in disease development.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Ioannis E. Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, USA
| | | | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- University of Padova, 35122 Padova, Italy
| |
Collapse
|
10
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
11
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
12
|
Rumbou A, Candresse T, Marais A, Svanella-Dumas L, Landgraf M, von Bargen S, Büttner C. Unravelling the virome in birch: RNA-Seq reveals a complex of known and novel viruses. PLoS One 2020; 15:e0221834. [PMID: 32589631 PMCID: PMC7319284 DOI: 10.1371/journal.pone.0221834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
To unravel the virome in birch trees of German and Finnish origin exhibiting symptoms of birch leaf-roll disease (BRLD), high-throughput sequencing (HTS) was employed. In total five viruses, among which three were so far unknown, were detected by RNAseq. One to five virus variants were identified in the transcriptome of individual trees. The novel viruses were genetically—fully or partially—characterized, belonging to the genera Carlavirus, Idaeovirus and Capillovirus and are tentatively named birch carlavirus, birch idaeovirus, and birch capillovirus, respectively. The recently discovered birch leafroll-associated virus was systematically detected by HTS in symptomatic seedlings but not in symptomless ones. The new carlavirus was detected only in one of the three symptomatic seedlings. The novel putative Capillovirus was detected in all seedlings—irrespective of their BLRD status—while the Idaeovirus was identified in a plant without leaf symptoms at the time of sampling. Further efforts are needed to complete Koch’s postulates and to clarify the possible association of the detected viruses with the BLR disease. Our study elucidates the viral population in single birch seedlings and provides a comprehensive overview for the diversities of the viral communities they harbor, to date.
Collapse
Affiliation(s)
- Artemis Rumbou
- Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| | - Thierry Candresse
- UMR 1332, Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS, Villenave d’Ornon, Bordeaux, France
| | - Armelle Marais
- UMR 1332, Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS, Villenave d’Ornon, Bordeaux, France
| | - Laurence Svanella-Dumas
- UMR 1332, Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS, Villenave d’Ornon, Bordeaux, France
| | - Maria Landgraf
- Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne von Bargen
- Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
14
|
Tarquini G, Zaina G, Ermacora P, De Amicis F, Franco-Orozco B, Loi N, Martini M, Bianchi GL, Pagliari L, Firrao G, de Paoli E, Musetti R. Agroinoculation of Grapevine Pinot Gris Virus in tobacco and grapevine provides insights on viral pathogenesis. PLoS One 2019; 14:e0214010. [PMID: 30889228 PMCID: PMC6424481 DOI: 10.1371/journal.pone.0214010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giusi Zaina
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | - Barbara Franco-Orozco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nazia Loi
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta Martini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | - Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Emanuele de Paoli
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
15
|
Sandra N, Jailani AAK, Jain RK, Mandal B. Development of Soybean Yellow Mottle Mosaic Virus-Based Expression Vector for Heterologous Protein Expression in French Bean. Mol Biotechnol 2019; 61:181-190. [PMID: 30600448 DOI: 10.1007/s12033-018-0147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant virus-based vectors provide attractive and valuable tools for rapid production of recombinant protein in large quantities as they produce systemic infections in differentiated plant tissues. In the present study, we engineered the Soybean yellow mottle mosaic virus (SYMMV) as a gene expression vector which is a promising candidate for systemic expression of foreign proteins in French bean plants. Full virus vector strategy was exploited for insertion of foreign gene by inserting MCS through PCR in the circular pJET-SYMMV clone. To examine the ability of the SYMMV vector system, GFP gene was cloned after the start codon of coat protein (CP) so that its expression was driven by the SYMMV-CP subgenomic promoter. When in vitro run off SYMMV-GFP transcript was mechanically inoculated to French bean leaves, good level of GFP expression was observed through confocal microscopy up to 40 dpi. Expression of heterologous protein was also confirmed through ISEM, DAC-ELISA and RT-PCR with specific primers at 20 dpi. The recombinant SYMMV construct was stable in in vitro runoff transcript inoculated plants but the inserted GFP was lost in progeny virion inoculated plants. The system developed here will be useful for further studies of SYMMV gene functions and exploitation of SYMMV as a gene expression vector.
Collapse
Affiliation(s)
- Nagamani Sandra
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - A Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh Kumar Jain
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
16
|
Cui T, Bin Y, Yan J, Mei P, Li Z, Zhou C, Song Z. Development of Infectious cDNA Clones of Citrus Yellow Vein Clearing Virus Using a Novel and Rapid Strategy. PHYTOPATHOLOGY 2018; 108:1212-1218. [PMID: 29726761 DOI: 10.1094/phyto-02-18-0029-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Yellow vein clearing disease (YVCD) causes significant economic losses in lemon and other species of citrus. Usually, citrus yellow vein clearing virus (CYVCV) is considered to be the causal agent of YVCD. However, mixed infection of CYVCV and Indian citrus ringspot virus (ICRSV) or other pathogens is often detected in citrus plants with YVCD. In this study, we re-examined the causal agent of YVCD to fulfill Koch's postulates. First, the full-length genome of CYVCV isolate AY (CYVCV-AY) was amplified by long-distance RT-PCR from a Eureka lemon (Citrus limon) tree with typical YVCD symptoms. The genomic cDNAs were then cloned into a ternary Yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pCY, using transformation-associated recombination (TAR) strategy, and 15 full-length cDNA clones of CYVCV-AY were obtained. Subsequently, four of these clones were selected randomly and inoculated on Jincheng (C. sinensis) seedlings through Agrobacterium-mediated vacuum-infiltration, and it was found that 80 to 100% of inoculated plants were infected with CYVCV by RT-PCR at 20 to 40 days postinoculation (dpi) and by direct tissue blot immunoassay at 60 dpi. The progeny of CYVCV-AY from cDNA clones caused typical symptoms of YVCD such as yellow vein clearing, leaf distortion, and chlorosis, which were the same as that elicited by wild-type virus. Finally, the regeneration of CYVCV-AY genome was confirmed by long-distance RT-PCR in lemon trees inoculated with the infectious cDNA clone. These results proved that CYVCV was the primary causal agent of YVCD. This is the first report on the development of infectious cDNA clones of CYVCV, which lays the foundation for further studies on viral gene functions and virus-host interactions.
Collapse
Affiliation(s)
- Tiantian Cui
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yu Bin
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Jianhong Yan
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Pengying Mei
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Zhongan Li
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Changyong Zhou
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Zhen Song
- All authors: Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| |
Collapse
|
17
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
18
|
Wetzel V, Brault V, Varrelmann M. Production of a Beet chlorosis virus full-length cDNA clone by means of Gibson assembly and analysis of biological properties. J Gen Virol 2018; 99:1522-1527. [PMID: 30215595 DOI: 10.1099/jgv.0.001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Beet chlorosis virus (genus Polerovirus, family Luteoviridae), which is persistently transmitted by the aphid Myzus persicae, is part of virus yellows in sugar beet and causes interveinal yellowing as well as significant yield loss in Beta vulgaris. To allow reverse genetic studies and replace vector transmission, an infectious cDNA clone under cauliflower mosaic virus 35S control in a binary vector for agrobacterium-mediated infection was constructed using Gibson assembly. Following agroinoculation, the BChV full-length clone was able to induce a systemic infection of the cultivated B. vulgaris. The engineered virus was successfully aphid-transmitted when acquired from infected B. vulgaris and displayed the same host plant spectrum as wild-type virus. This new polerovirus infectious clone is a valuable tool to identify the viral determinants involved in host range and study BChV protein function, and can be used to screen sugar beet for BChV resistance.
Collapse
Affiliation(s)
- Veronika Wetzel
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Véronique Brault
- 2SVQV, Université de Strasbourg, INRA, Equipe Virologie Vection, 28 Rue de Herrlisheim, 68000 Colmar, France
| | - Mark Varrelmann
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
19
|
Kim IH, Han JY, Cho IS, Ju H, Moon JS, Seo EY, Kim HG, Hammond J, Lim HS. Generation of an Infectious Clone of a New Korean Isolate of Apple chlorotic leaf spot virus Driven by Dual 35S and T7 Promoters in a Versatile Binary Vector. THE PLANT PATHOLOGY JOURNAL 2017; 33:608-613. [PMID: 29238285 PMCID: PMC5720609 DOI: 10.5423/ppj.nt.05.2017.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacteriophage T7 RNA promoter and the Cauliflower mosaic virus 35S promoter. Chenopodium quinoa was successfully infected using in vitro transcripts synthesized using the T7 promoter, detected at 20 days post inoculation (dpi), but did not produce obvious symptoms. Nicotiana occidentalis and C. quinoa were inoculated through agroinfiltration. At 32 dpi the infection rate was evaluated; no C. quinoa plants were infected by agroinfiltration, but infection of N. occidentalis was obtained.
Collapse
Affiliation(s)
- Ik-Hyun Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Jae-Yeong Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - HyeKyoung Ju
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Jae Sun Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 34113,
Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hong Gi Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - John Hammond
- United States Department of Agriculture - Agricultural Research Service, United States National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705,
USA
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
20
|
Zhang L, Jelkmann W. Construction of Full-length Infectious cDNA Clones of Apple chlorotic leaf spot virus and Their Agroinoculation to Woody Plants by a Novel Method of Vacuum Infiltration. PLANT DISEASE 2017; 101:2110-2115. [PMID: 30677370 DOI: 10.1094/pdis-04-17-0573-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Construction and agroinoculation of full-length infectious cDNA clones of plant RNA viruses have been used in plant virology to prove Koch's postulates and for development of viruses as vectors for expressing foreign genes in plants. Four full-length cDNA clones (pIF3-12, pIF3-14, pIF3-15, and pIF3-19) of Apple chlorotic leaf spot virus (ACLSV) isolate 38/85 were produced. Two of the four full-length cDNA clones (pIF3-15 and pIF3-19) proved to be infectious on Nicotiana occidentalis 37B test plants by agroinoculation and were then mechanically transmissible to healthy N. occidentalis 37B. The genomic cDNAs of ACLSV pIF3-15 and pIF3-19 shared nucleotide identity of 77.5%, demonstrating mixed infections of multiple strains of ACLSV in the source tree of isolate 38/85. The two full-length cDNA clones were agroinoculated to apple seedlings by a newly developed vacuum infiltration method. The success rate of agroinoculation was greater than 78%, defined as the number of PCR positive seedlings to the number of apple seedlings that survived. ACLSV was transmissible from agroinoculated seedlings by cleft grafting. The results of this study will be useful for construction of infectious cDNA clones of plant viruses from full-length PCR fragments and agroinoculating woody host plants using the vacuum infiltration method outlined here.
Collapse
Affiliation(s)
- Lei Zhang
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, D-69221 Dossenheim, and Ruprecht-Karls-Universität Heidelberg, Centre for Organismal Studies, 69120 Heidelberg, Germany
| | - Wilhelm Jelkmann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, D-69221 Dossenheim, Germany
| |
Collapse
|
21
|
Sun K, Zhao D, Liu Y, Huang C, Zhang W, Li Z. Rapid Construction of Complex Plant RNA Virus Infectious cDNA Clones for Agroinfection Using a Yeast-E. coli-Agrobacterium Shuttle Vector. Viruses 2017; 9:v9110332. [PMID: 29112135 PMCID: PMC5707539 DOI: 10.3390/v9110332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
The availability of infectious full-length clone is indispensable for reverse genetics studies of virus biology, pathology and construction of viral vectors. However, for RNA viruses with large genome sizes or those exhibiting inherent cloning difficulties, procedure to generate biologically active complementary DNA (cDNA) clones can be time-consuming or technically challenging. Here we have constructed a yeast-Escherichia coli-Agrobacterium shuttle vector that enables highly efficient homologous recombination in yeast for assembly of Agrobacterium compatible plant virus clones. Using this vector, we show that infectious cDNA clones of a plant negative-stranded RNA virus, sonchus yellow net rhabdovirus, can be rapidly assembled. In addition, one-step assembly of infectious clones of potato virus Y in yeast, either with or without intron, was readily achieved from as many as eight overlapping DNA fragments. More importantly, the recovered yeast plasmids can be transformed directly into Agrobacterium for inoculation, thereby obviating the E. coli cloning steps and associated toxicity issues. This method is rapid, highly efficient and cost-effective and should be readily applicable to a broad range of plant viruses.
Collapse
Affiliation(s)
- Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Danyang Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Wei Zhang
- Sichuan Plant Protection Station, Chengdu 610041, China.
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Tuo D, Fu L, Shen W, Li X, Zhou P, Yan P. Generation of stable infectious clones of plant viruses by using Rhizobium radiobacter for both cloning and inoculation. Virology 2017; 510:99-103. [PMID: 28715654 PMCID: PMC7173343 DOI: 10.1016/j.virol.2017.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023]
Abstract
A novel Rhizobium radiobacter (synonym Agrobacterium tumefaciens)-mediated approach was developed to generate stable infectious clones of plant viruses. This method uses R. radiobacter for both cloning and inoculation of infectious clones, bypassing the requirement of cloning in E. coli to avoid the instability. Only three steps are included in this method: (i) construct viral genome-encoding plasmids in vitro by one-step Gibson assembly; (ii) transform the assembled DNA products into R. radiobacter; (iii) inoculate plants with the R. radiobacter clones containing the viral genome. Stable infectious clones were obtained from two potyviruses papaya ringspot virus (PRSV) and papaya leaf distortion mosaic virus (PLDMV) using this method, whereas attempts utilizing "classical" E. coli cloning system failed repeatedly. This method is simple and efficient, and is promising for a wide application in generation of infectious clones of plant virus, especially for those which are instable in E. coli. A novel approach was developed to generate infectious clones of plant viruses. It uses R. radiobacter for both cloning and inoculation of infectious clones. It bypasses the requirement of cloning in E. coli to avoid the instability. Stable infectious clones of PRSV and PLDMV were obtained using this method.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lanlan Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
23
|
Movement protein of Apple chlorotic leaf spot virus is genetically unstable and negatively regulated by Ribonuclease E in E. coli. Sci Rep 2017; 7:2133. [PMID: 28522867 PMCID: PMC5437062 DOI: 10.1038/s41598-017-02375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/10/2017] [Indexed: 12/03/2022] Open
Abstract
Movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) belongs to “30 K” superfamily of proteins and members of this family are known to show a wide array of functions. In the present study this gene was found to be genetically unstable in E. coli when transformed DH5α cells were grown at 28 °C and 37 °C. However, genetic instability was not encountered at 20 °C. Heterologous over expression failed despite the use of different transcriptional promoters and translational fusion constructs. Total cell lysate when subjected to western blotting using anti-ACLSV MP antibodies, showed degradation/cleavage of the expressed full-length protein. This degradation pointed at severe proteolysis or instability of the corresponding mRNA. Predicted secondary structure analysis of the transcript revealed a potential cleavage site for an endoribonuclease (RNase E) of E. coli. The negating effect of RNase E on transcript stability and expression was confirmed by northern blotting and quantitative RT-PCR of the RNA extracted from RNase E temperature sensitive mutant (strain N3431). The five fold accumulation of transcripts at non-permissive temperature (43 °C) suggests the direct role of RNase E in regulating the expression of ACLSV MP in E. coli.
Collapse
|
24
|
Sandra N, Jailani AAK, Jain RK, Mandal B. Genome characterization, infectivity assays of in vitro and in vivo infectious transcripts of soybean yellow mottle mosaic virus from India reveals a novel short mild genotype. Virus Res 2017; 232:96-105. [PMID: 28215614 DOI: 10.1016/j.virusres.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/16/2023]
Abstract
Nucleotide sequence of a distinct soybean yellow mottle mosaic virusisolate from Vignaradiata (mungbean isolate, SYMMV-Mb) from India was determined and compared with othermembers of the family Tombusviridae. The complete monopartite single-stranded RNA genome of SYMMV-Mb consisted of 3974nt with six putative open reading frames and includes 5' and 3' untranslated regions of 35 and 254nt, respectively. SYMMV-Mb genome shared 75% nt sequence identity at complete genome level and 67-92% identity at all ORFs level with SYMMV Korean and USA isolates (soybean isolates) followed by CPMoV, whereas it shared very low identity with other tombusviridae members (5-41%). A full-length infectious cDNA clone of the SYMMV-Mb placed under the control of the T7 RNA polymerase and the CaMV35S promoters was generated and French bean plants on mechanical inoculation with in vitro RNA transcripts, p35SSYMMV-O4 plasmid and agroinoculation with p35SSYMMV-O4 showed symptoms typical of SYMMV-Mb infection. The infection was confirmed by DAC-ELISA, ISEM, RT-PCR and mechanical transmission to new plant species. Further testing of different plant species with agroinoculation of p35SSYMMV-O4 showed delay in symptoms but indistinguishable from mechanical sap inoculation and the infection was confirmed by DAC-ELISA, RT-PCR and mechanical transmission to new plants. The system developed here will be useful for further studies on pathogenecity, viral gene functions, plant-virus-vector interactions of SYMMV-Mb and to utilize it as a gene expression and silencing vector.
Collapse
Affiliation(s)
- Nagamani Sandra
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - A Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kumar Jain
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
25
|
Kilaru S, Steinberg G. Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici. Fungal Genet Biol 2016; 79:76-83. [PMID: 26092792 PMCID: PMC4502459 DOI: 10.1016/j.fgb.2015.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 11/28/2022]
Abstract
Yeast recombination-based cloning (YRBC) is a reliable and inexpensive way of generating plasmids. We provide 4 vectors for YRBC that a cover different resistance genes. Using this technique promises rapid generation of molecular tools to study Z. tritici.
Many pathogenic fungi are genetically tractable. Analysis of their cellular organization and invasion mechanisms underpinning virulence determinants profits from exploiting such molecular tools as fluorescent fusion proteins or conditional mutant protein alleles. Generation of these tools requires efficient cloning methods, as vector construction is often a rate-limiting step. Here, we introduce an efficient yeast recombination-based cloning (YRBC) method to construct vectors for the fungus Zymoseptoria tritici. This method is of low cost and avoids dependency on the availability of restriction enzyme sites in the DNA sequence, as needed in more conventional restriction/ligation-based cloning procedures. Furthermore, YRBC avoids modification of the DNA of interest, indeed this potential risk limits the use of site-specific recombination systems, such as Gateway cloning. Instead, in YRBC, multiple DNA fragments, with 30 bp overlap sequences, are transformed into Saccharomyces cerevisiae, whereupon homologous recombination generates the vector in a single step. Here, we provide a detailed experimental protocol and four vectors, each encoding a different dominant selectable marker cassette, that enable YRBC of constructs to be used in the wheat pathogen Z. tritici.
Collapse
Affiliation(s)
- S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
26
|
Tuo D, Shen W, Yan P, Li X, Zhou P. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning. Viruses 2015; 7:6241-50. [PMID: 26633465 PMCID: PMC4690859 DOI: 10.3390/v7122935] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli.In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
27
|
Construction of infectious cDNA clone derived from a classical swine fever virus field isolate in BAC vector using in vitro overlap extension PCR and recombination. J Virol Methods 2015; 226:60-6. [DOI: 10.1016/j.jviromet.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/26/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
|
28
|
Bordat A, Houvenaghel MC, German-Retana S. Gibson assembly: an easy way to clone potyviral full-length infectious cDNA clones expressing an ectopic VPg. Virol J 2015; 12:89. [PMID: 26070311 PMCID: PMC4475333 DOI: 10.1186/s12985-015-0315-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/29/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Approaches to simplify and accelerate the construction of full-length infectious cDNA clones for plant potyviruses have been described, based on cloning strategies involving in vitro ligation or homologous recombination in yeast. In the present study, we developed a faster and more efficient in vitro recombination system using Gibson assembly (GA), to engineer a Lettuce mosaic virus (LMV) infectious clone expressing an ectopic mcherry-tagged VPg (Viral protein genome-linked) for in planta subcellular localization of the viral protein in an infection context. METHODS Three overlapping long distance PCR fragments were amplified and assembled in a single-step process based on in vitro recombination (Gibson assembly). The resulting 17.5 kbp recombinant plasmids (LMVmchVPg_Ec) were inoculated by biolistic on lettuce plants and then propagated mechanically on Nicotiana benthamiana. Confocal microscopy was used to analyze the subcellular localization of the ectopically expressed mcherry-VPg fusion protein. RESULTS The Gibson assembly allowed the cloning of the expected plasmids without any deletion. All the inoculated plants displayed symptoms characteristic of LMV infection. The majority of the mcherry fluorescent signal observed using confocal microscopy was located in the nucleus and nucleolus as expected for a potyviral VPg. CONCLUSIONS This is the first report of the use of the Gibson assembly method to construct full-length infectious cDNA clones of a potyvirus genome. This is also the first description of the ectopic expression of a tagged version of a potyviral VPg without affecting the viability of the recombinant potyvirus.
Collapse
Affiliation(s)
- Amandine Bordat
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| | - Marie-Christine Houvenaghel
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| | - Sylvie German-Retana
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| |
Collapse
|
29
|
Dhir S, Walia Y, Zaidi AA, Hallan V. A simplified strategy for studying the etiology of viral diseases: Apple stem grooving virus as a case study. J Virol Methods 2014; 213:106-10. [PMID: 25486082 DOI: 10.1016/j.jviromet.2014.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
A simple method to amplify infective, complete genomes of single stranded RNA viruses by long distance PCR (LD PCR) from woody plant tissues is described in detail. The present protocol eliminates partial purification of viral particles and the amplification is achieved in three steps: (i) easy preparation of template RNA by incorporating a pre processing step before loading onto the column (ii) reverse transcription by AMV or Superscript reverse transcriptase and (iii) amplification of cDNA by LD PCR using LA or Protoscript Taq DNA polymerase. Incorporation of a preprocessing step helped to isolate consistent quality RNA from recalcitrant woody tissues such as apple, which was critical for efficient amplification of the complete genomes of Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV). Complete genome of ASGV was cloned under T7 RNA polymerase promoter and was confirmed to be infectious through transcript inoculation producing symptoms similar to the wild type virus. This is the first report for the largest RNA virus genome amplified by PCR from total nucleic acid extracts of woody plant tissues.
Collapse
Affiliation(s)
- Sunny Dhir
- Plant Virus Lab, Floriculture Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Yashika Walia
- Plant Virus Lab, Floriculture Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
| | - A A Zaidi
- Plant Virus Lab, Floriculture Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
| | - Vipin Hallan
- Plant Virus Lab, Floriculture Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India.
| |
Collapse
|
30
|
Candresse T, Marais A, Faure C, Gentit P. Association of Little cherry virus 1 (LChV1) with the Shirofugen stunt disease and characterization of the genome of a divergent LChV1 isolate. PHYTOPATHOLOGY 2013; 103:293-8. [PMID: 23402630 DOI: 10.1094/phyto-10-12-0275-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Double-stranded RNAs purified from the V2356 ('Successa') sour cherry source of the Shirofugen stunt disease (SSD) were sequenced using a 454 pyrosequencing multiplex approach. The 15,646 reads obtained were assembled into 279 contigs, 5 of which, totaling almost 16.9 kbp and 5,332 reads (34% of sample reads), showed high Blast scores and homology to Little cherry virus 1 (LChV1). The five contigs were further assembled manually into three supercontigs spanning the full LChV1 genome with only two small gaps (17 and 55 bases). Completion of the sequencing of the viral genome was performed using targeted polymerase chain reaction and primers designed from the contigs. No evidence for the presence of other viral agents in the V2356 source could be obtained in the remaining contigs or singletons. The V2356 LChV1 isolate is only ≈76% identical with the reference complete LChV1 sequences and, in particular, with the ITMAR isolate associated with the Kwanzan stunting syndrome. However, it is highly homologous (97 to 100% identity) in two short genome regions with divergent LChV1 from North America, providing the first complete sequence for such divergent isolates. Although not providing a definite proof, the failure to detect any other viral agent in the V2356 SSD source and the identification of LChV1 in a second, independent, source of the disease suggests that LChV1 isolates could be responsible for the SSD syndrome.
Collapse
|
31
|
Desbiez C, Chandeysson C, Lecoq H, Moury B. A simple, rapid and efficient way to obtain infectious clones of potyviruses. J Virol Methods 2012; 183:94-7. [DOI: 10.1016/j.jviromet.2012.03.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 11/29/2022]
|