1
|
Nomura N, Matsuno K, Shingai M, Ohno M, Sekiya T, Omori R, Sakoda Y, Webster RG, Kida H. Updating the influenza virus library at Hokkaido University -It's potential for the use of pandemic vaccine strain candidates and diagnosis. Virology 2021; 557:55-61. [PMID: 33667751 DOI: 10.1016/j.virol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.
Collapse
Affiliation(s)
- Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
2
|
Re-Invasion of H5N8 High Pathogenicity Avian Influenza Virus Clade 2.3.4.4b in Hokkaido, Japan, 2020. Viruses 2020; 12:v12121439. [PMID: 33327524 PMCID: PMC7764937 DOI: 10.3390/v12121439] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/04/2023] Open
Abstract
Global dispersion of high pathogenicity avian influenza (HPAI), especially that caused by H5 clade 2.3.4.4, has threatened poultry industries and, potentially, human health. An HPAI virus, A/northern pintail/Hokkaido/M13/2020 (H5N8) (NP/Hok/20) belonging to clade 2.3.4.4b, was isolated from a fecal sample collected at a lake in Hokkaido, Japan where migratory birds rested, October 2020. In the phylogenetic trees of all eight gene segments, NP/Hok/20 fell into in the cluster of European isolates in 2020, but was distinct from the isolates in eastern Asia and Europe during the winter season of 2017–2018. The antigenic cartography indicates that the antigenicity of NP/Hok/20 was almost the same as that of previous isolates of H5 clade 2.3.4.4b, whereas the antigenic distances from NP/Hok/20 to the representative strains in clade 2.3.4.4e and to a strain in 2.3.4 were apparently distant. These data imply that HPAI virus clade 2.3.4.4b should have been delivered by bird migration despite the intercontinental distance, although it was not defined whether NP/Hok/20 was transported from Europe via Siberia where migratory birds nest in the summer season. Given the probability of perpetuation of transmission in the northern territory, periodic updates of intensive surveys on avian influenza at the global level are essential to prepare for future outbreaks of the HPAI virus.
Collapse
|
3
|
Twabela AT, Okamatsu M, Tshilenge GM, Mpiana S, Masumu J, Nguyen LT, Matsuno K, Monne I, Zecchin B, Sakoda Y. Molecular, antigenic, and pathogenic characterization of H5N8 highly pathogenic avian influenza viruses isolated in the Democratic Republic of Congo in 2017. Arch Virol 2019; 165:87-96. [PMID: 31707455 DOI: 10.1007/s00705-019-04456-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]
Abstract
In May 2017, high mortality of chickens and Muscovy ducks due to the H5N8 highly pathogenic avian influenza virus (HPAIV) was reported in the Democratic Republic of Congo (DR Congo). In this study, we assessed the molecular, antigenic, and pathogenic features in poultry of the H5N8 HPAIV from the 2017 Congolese outbreaks. Phylogenetic analysis of the eight viral gene segments revealed that all 12 DR Congo isolates clustered in clade 2.3.4.4B together with other H5N8 HPAIVs isolated in Africa and Eurasia, suggesting a possible common origin of these viruses. Antigenically, a slight difference was observed between the Congolese isolates and a representative virus from group C in the same clade. After intranasal inoculation with a representative DR Congo virus, high pathogenicity was observed in chickens and Muscovy ducks but not in Pekin ducks. Viral replication was higher in chickens than in Muscovy duck and Pekin duck organs; however, neurotropism was pronounced in Muscovy ducks. Our data confirmed the high pathogenicity of the DR Congo virus in chickens and Muscovy ducks, as observed in the field. National awareness and strengthening surveillance in the region are needed to better control HPAIVs.
Collapse
Affiliation(s)
- Augustin T Twabela
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.,Central Veterinary Laboratory of Kinshasa, Kinshasa I, Gombe, Democratic Republic of Congo
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | | | - Serge Mpiana
- Central Veterinary Laboratory of Kinshasa, Kinshasa I, Gombe, Democratic Republic of Congo
| | - Justin Masumu
- Central Veterinary Laboratory of Kinshasa, Kinshasa I, Gombe, Democratic Republic of Congo
| | - Lam Thanh Nguyen
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan. .,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
4
|
Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y, Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito T, Otsuki K, Ito T, Kida H. Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016. Emerg Infect Dis 2018; 23:691-695. [PMID: 28322695 PMCID: PMC5367431 DOI: 10.3201/eid2304.161957] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.
Collapse
|
5
|
Shibata A, Hiono T, Fukuhara H, Sumiyoshi R, Ohkawara A, Matsuno K, Okamatsu M, Osaka H, Sakoda Y. Isolation and characterization of avian influenza viruses from raw poultry products illegally imported to Japan by international flight passengers. Transbound Emerg Dis 2017; 65:465-475. [DOI: 10.1111/tbed.12726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- A. Shibata
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - T. Hiono
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - H. Fukuhara
- Microbiological Examination Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Yokohama Kanagawa Japan
| | - R. Sumiyoshi
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - A. Ohkawara
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - K. Matsuno
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Hokkaido University; Sapporo Hokkaido Japan
| | - M. Okamatsu
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - H. Osaka
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - Y. Sakoda
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Hokkaido University; Sapporo Hokkaido Japan
| |
Collapse
|
6
|
Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T, Matsuno K, Kida H, Sakoda Y. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 2017; 61:149-158. [PMID: 28370432 DOI: 10.1111/1348-0421.12478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1-7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains.
Collapse
Affiliation(s)
- Ayako Ohkawara
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065.,United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515
| | - Duc-Huy Chu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Lam Thanh Nguyen
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Research Center for Zoonosis Control, Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
7
|
Suzuki M, Okamatsu M, Hiono T, Matsuno K, Sakoda Y. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice. J Vet Med Sci 2017; 79:1815-1821. [PMID: 28993601 PMCID: PMC5709558 DOI: 10.1292/jvms.17-0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually
isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an
effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in
Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine
induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus
library would be useful against a future H2 influenza pandemic.
Collapse
Affiliation(s)
- Mizuho Suzuki
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
8
|
Hiono T, Okamatsu M, Matsuno K, Haga A, Iwata R, Nguyen LT, Suzuki M, Kikutani Y, Kida H, Onuma M, Sakoda Y. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan. Microbiol Immunol 2017; 61:387-397. [DOI: 10.1111/1348-0421.12506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Keita Matsuno
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| | - Atsushi Haga
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Ritsuko Iwata
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Lam Thanh Nguyen
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Mizuho Suzuki
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Yuto Kikutani
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
- Research Center for Zoonosis Control; Hokkaido University; Sapporo Hokkaido 001-0020 Japan
| | - Manabu Onuma
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| |
Collapse
|
9
|
Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses. Arch Virol 2017; 162:2257-2269. [PMID: 28405766 DOI: 10.1007/s00705-017-3350-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
H5N1 highly pathogenic avian influenza viruses (HPAIVs) are a threat to both animal and public health and require specific and rapid detection for prompt disease control. We produced three neutralizing anti-hemagglutinin (HA) monoclonal antibodies (mAbs) using two clades (2.2 and 2.5) of the H5N1 HPAIV isolated in Japan. Blocking immunofluorescence tests showed that each mAb recognized different epitopes; 3B5.1 and 3B5.2 mAbs against the clade 2.5 virus showed cross-clade reactivity to all 26 strains from clades 1, 2.2, 2.3.2.1, 2.3.2.1a, b, c and 2.3.4, suggesting that the epitope(s) recognized are conserved. Conversely, the 1G5 mAb against the clade 2.2 virus showed reactivity to only clades 1, 2.3.4 and 2.5 strains. An analysis of escape mutants, and some clades of the H5N1 viruses recognized by 3B5.1 and 3B5.2 mAbs, suggested that the mAbs bind to an epitope, including amino acid residues at position 162 in the HA1 protein (R162 and K162). Unexpectedly, however, when five Eurasian-origin H5 low-pathogenic AIV (LPAIV) strains with R162 were examined (EA-nonGsGD clade) as well as two American-origin strains (Am-nonGsGD clade), the mAb recognized only EA-nonGsGD clade strains. The R162 and K162 residues in the HA1 protein were highly conserved among 36 of the 43 H5N1 clades reported, including clades 2.3.2.1a and 2.3.2.1c that are currently circulating in Asia, Africa and Europe. The amino acid residues (158-PTIKRSYNNTNQE-170) in the HA1 protein are probably an epitope responsible for the cross-clade reactivity of the mAbs, considering the epitopes reported elsewhere. The 3B5.1 and 3B5.2 mAbs may be useful for the specific detection of H5N1 HPAIVs circulating in the field.
Collapse
|
10
|
Durand LO, Glew P, Gross D, Kasper M, Trock S, Kim IK, Bresee JS, Donis R, Uyeki TM, Widdowson MA, Azziz-Baumgartner E. Timing of influenza A(H5N1) in poultry and humans and seasonal influenza activity worldwide, 2004-2013. Emerg Infect Dis 2015; 21:202-8. [PMID: 25625302 PMCID: PMC4313643 DOI: 10.3201/eid2102.140877] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Co-circulation of H5N1 in poultry and humans during seasonal influenza epidemic periods signals the need for enhanced surveillance and biosafety measures. Co-circulation of influenza A(H5N1) and seasonal influenza viruses among humans and animals could lead to co-infections, reassortment, and emergence of novel viruses with pandemic potential. We assessed the timing of subtype H5N1 outbreaks among poultry, human H5N1 cases, and human seasonal influenza in 8 countries that reported 97% of all human H5N1 cases and 90% of all poultry H5N1 outbreaks. In these countries, most outbreaks among poultry (7,001/11,331, 62%) and half of human cases (313/625, 50%) occurred during January–March. Human H5N1 cases occurred in 167 (45%) of 372 months during which outbreaks among poultry occurred, compared with 59 (10%) of 574 months that had no outbreaks among poultry. Human H5N1 cases also occurred in 59 (22%) of 267 months during seasonal influenza periods. To reduce risk for co-infection, surveillance and control of H5N1 should be enhanced during January–March, when H5N1 outbreaks typically occur and overlap with seasonal influenza virus circulation.
Collapse
|
11
|
Genetic and antigenic characterization of H5 and H7 influenza viruses isolated from migratory water birds in Hokkaido, Japan and Mongolia from 2010 to 2014. Virus Genes 2015; 51:57-68. [PMID: 26036326 DOI: 10.1007/s11262-015-1214-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/23/2015] [Indexed: 12/24/2022]
Abstract
Migratory water birds are the natural reservoir of influenza A viruses. H5 and H7 influenza viruses are isolated over the world and also circulate among poultry in Asia. In 2010, two H5N1 highly pathogenic avian influenza viruses (HPAIVs) were isolated from fecal samples of water birds on the flyway of migration from Siberia, Russia to the south in Hokkaido, Japan. H7N9 viruses are sporadically isolated from humans and circulate in poultry in China. To monitor whether these viruses have spread in the wild bird population, we conducted virological surveillance of avian influenza in migratory water birds in autumn from 2010 to 2014. A total of 8103 fecal samples from migratory water birds were collected in Japan and Mongolia, and 350 influenza viruses including 13 H5 and 19 H7 influenza viruses were isolated. A phylogenetic analysis revealed that all isolates are genetically closely related to viruses circulating among wild water birds. The results of the antigenic analysis indicated that the antigenicity of viruses in wild water birds is highly stable despite their nucleotide sequence diversity but is distinct from that of HPAIVs recently isolated in Asia. The present results suggest that HPAIVs and Chinese H7N9 viruses were not predominantly circulating in migratory water birds; however, continued monitoring of H5 and H7 influenza viruses both in domestic and wild birds is recommended for the control of avian influenza.
Collapse
|
12
|
Durand LO, Glew P, Gross D, Kasper M, Trock S, Kim IK, Bresee JS, Donis R, Uyeki TM, Widdowson MA, Azziz-Baumgartner E. Timing of Influenza A(H5N1) in Poultry and Humans and Seasonal Influenza Activity Worldwide, 2004–2013. Emerg Infect Dis 2015. [DOI: 10.3201/eid2102.140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Potency of an inactivated influenza vaccine prepared from A/duck/Hong Kong/960/1980 (H6N2) against a challenge with A/duck/Vietnam/OIE-0033/2012 (H6N2) in mice. Arch Virol 2014; 159:2567-74. [DOI: 10.1007/s00705-014-2107-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
14
|
Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res 2013; 178:63-77. [PMID: 23735535 PMCID: PMC3787969 DOI: 10.1016/j.virusres.2013.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in Southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Richard J. Webby
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Robert G. Webster
- corresponding author, Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA Tel +1 901 595 3400 Fax +1 901 595 8559
| |
Collapse
|
15
|
de Silva UC, Tanaka H, Nakamura S, Goto N, Yasunaga T. A comprehensive analysis of reassortment in influenza A virus. Biol Open 2012; 1:385-90. [PMID: 23213428 PMCID: PMC3509451 DOI: 10.1242/bio.2012281] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Genetic reassortment plays a vital role in the evolution of the influenza virus and has historically been linked with the emergence of pandemic strains. Reassortment is believed to occur when a single host - typically swine - is simultaneously infected with multiple influenza strains. The reassorted viral strains with novel gene combinations tend to easily evade the immune system in other host species, satisfying the basic requirements of a virus with pandemic potential. Therefore, it is vital to continuously monitor the genetic content of circulating influenza strains and keep an eye out for new reassortants. We present a new approach to identify reassortants from large data sets of influenza whole genome nucleotide sequences and report the results of the first ever comprehensive search for reassortants of all published influenza A genomic data. 35 of the 52 well supported candidate reassortants we found are reported here for the first time while our analysis method offers new insight that enables us to draw a more detailed picture of the origin of some of the previously reported reassortants. A disproportionately high number (13/52) of the candidate reassortants found were the result of the introduction of novel hemagglutinin and/or neuraminidase genes into a previously circulating virus. The method described in this paper may contribute towards automating the task of routinely searching for reassortants among newly sequenced strains.
Collapse
Affiliation(s)
- U Chandimal de Silva
- Department of Genome Informatics ; World Premier International Immunology Frontier Research Centre, Osaka University , Osaka 565-0871 , Japan
| | | | | | | | | |
Collapse
|
16
|
Sakoda Y, Ito H, Uchida Y, Okamatsu M, Yamamoto N, Soda K, Nomura N, Kuribayashi S, Shichinohe S, Sunden Y, Umemura T, Usui T, Ozaki H, Yamaguchi T, Murase T, Ito T, Saito T, Takada A, Kida H. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan. J Gen Virol 2011; 93:541-550. [PMID: 22113008 DOI: 10.1099/vir.0.037572-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Veterinary Public Health, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuko Uchida
- Research Team for Zoonotic Diseases, National Institute of Animal Health, Tsukuba 305-0856, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoki Nomura
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Saya Kuribayashi
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shintaro Shichinohe
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tatsufumi Usui
- Laboratory of Veterinary Hygiene, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hiroichi Ozaki
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tsuyoshi Yamaguchi
- Laboratory of Veterinary Hygiene, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Toshiyuki Murase
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Veterinary Public Health, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takehiko Saito
- Research Team for Zoonotic Diseases, National Institute of Animal Health, Tsukuba 305-0856, Japan
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroshi Kida
- Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan.,Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
17
|
Nomura N, Sakoda Y, Endo M, Yoshida H, Yamamoto N, Okamatsu M, Sakurai K, Hoang NV, Nguyen LV, Chu HD, Tien TN, Kida H. Characterization of avian influenza viruses isolated from domestic ducks in Vietnam in 2009 and 2010. Arch Virol 2011; 157:247-57. [PMID: 22068881 PMCID: PMC7086777 DOI: 10.1007/s00705-011-1152-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/15/2011] [Indexed: 12/01/2022]
Abstract
In the surveillance of avian influenza in Vietnam, 26 H9N2, 1 H3N2, 1 H3N8, 7 H4N6, 3 H11N3, and 1 H11N9 viruses were isolated from tracheal and cloacal swab samples of 300 domestic ducks in April 2009, and 1 H9N6 virus from 300 bird samples in March 2010. Out of the 27 H9 virus isolates, the hemagglutinins of 18 strains were genetically classified as belonging to the sublineage G1, and the other nine belonged to the Korean sublineage. Phylogenetic analysis revealed that one of the 27 H9 viruses was a reassortant in which the PB2 gene belonged to the Korean sublineage and the other seven genes belonged to the G1 sublineage. Three representative H9N2 viruses were intranasally inoculated into ducks, chickens, pigs, and mice. On the basis of experimental infection studies, it was found that each of the three viruses readily infected pigs and replicated in their upper respiratory tracts, and they infected chickens with slight replication. Viruses were recovered from the lungs of mice inoculated with two of the three isolates. The present results reveal that H9 avian influenza viruses are prevailing and genetic reassortment occurs among domestic ducks in Vietnam. It is recommended that careful surveillance of swine influenza with H9 viruses should be performed to prepare for pandemic influenza.
Collapse
Affiliation(s)
- Naoki Nomura
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|