1
|
Yi L, Zhang L, Feng L, Luan X, Zhao Q, Xu P, Wang Y, Tao L, Wu W. Genomic analysis of a recombinant coxsackievirus A19 identified in Xinxiang, China, in 2019. Arch Virol 2022; 167:1405-1420. [DOI: 10.1007/s00705-022-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
|
2
|
Identification of CRF89_BF, a new member of an HIV-1 circulating BF intersubtype recombinant form family widely spread in South America. Sci Rep 2021; 11:11442. [PMID: 34075073 PMCID: PMC8169922 DOI: 10.1038/s41598-021-90023-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Circulating recombinant forms (CRFs) contribute substantially to the HIV-1 pandemic. Among 105 CRFs described in the literature, 16 are BF intersubtype recombinants, most of South American origin, of which CRF12_BF is the most widely spread. A BF recombinant cluster identified in Bolivia was suggested to represent a new CRF_BF. Here we find that it belongs to a larger cluster incorporating 39 viruses collected in 7 countries from 3 continents, 22 of them in Spain, most from Bolivian or Peruvian individuals, and 12 in South America (Bolivia, Argentina, and Peru). This BF cluster comprises three major subclusters, two associated with Bolivian and one with Peruvian individuals. Near full-length genome sequence analyses of nine viruses, collected in Spain, Bolivia, and Peru, revealed coincident BF mosaic structures, with 13 breakpoints, 6 and 7 of which coincided with CRF12_BF and CRF17_BF, respectively. In a phylogenetic tree, they grouped in a clade closely related to these CRFs, and more distantly to CRF38_BF and CRF44_BF, all circulating in South America. These results allowed to identify a new HIV-1 CRF, designated CRF89_BF. Through phylodynamic analyses, CRF89_BF emergence was estimated in Bolivia around 1986. CRF89_BF is the fifth CRF member of the HIV-1 recombinant family related to CRF12_BF.
Collapse
|
3
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
4
|
Shankarappa R, Mullins JI. Inferring viral population structures using heteroduplex mobility and DNA sequence analyses. J Virol Methods 2013; 194:169-77. [PMID: 23994080 DOI: 10.1016/j.jviromet.2013.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022]
Abstract
Heteroduplex mobility (HMA) and tracking assays (HTA) are used to assess genetic relationships between DNA molecules. While distinguishing relationships between clonal or nearly clonal molecules is relatively straightforward, inferring population structures is more complex. To address this issue, HIV-1 quasispecies with varying levels of diversity were studied using both HTA and DNA sequencing. Viral diversity estimates and the temporal features of virus evolution were found to be generally concordant between HTA and DNA sequencing. In addition, the distribution of pairwise differences and the rates of virus divergence were similar between the two methods. These findings support the use of HTA to characterize variant populations of DNA and strengthen previous inferences concerning the evolution of HIV-1 over the course of infection.
Collapse
Affiliation(s)
- Raj Shankarappa
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070, United States
| | | |
Collapse
|