1
|
Bonosi L, Benigno UE, Musso S, Giardina K, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Buscemi F, Avallone C, Gulino V, Iacopino DG, Maugeri R. The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 2023; 24:11923. [PMID: 37569297 PMCID: PMC10418736 DOI: 10.3390/ijms241511923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane proteins involved in the transport of water and ions across cell membranes. AQPs have been shown to be implicated in various physiological and pathological processes in the brain, including water homeostasis, cell migration, and inflammation, among others. Epileptogenesis is a complex and multifactorial process that involves alterations in the structure and function of neuronal networks. Recent evidence suggests that AQPs may also play a role in the pathogenesis of epilepsy. In animal models of epilepsy, AQPs have been shown to be upregulated in regions of the brain that are involved in seizure generation, suggesting that they may contribute to the hyperexcitability of neuronal networks. Moreover, genetic studies have identified mutations in AQP genes associated with an increased risk of developing epilepsy. Our review aims to investigate the role of AQPs in epilepsy and seizure onset from a pathophysiological point of view, pointing out the potential molecular mechanism and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (U.E.B.); (S.M.); (K.G.); (R.M.G.); (L.B.); (R.C.); (F.P.); (F.B.); (C.A.); (V.G.); (D.G.I.)
| |
Collapse
|
2
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
3
|
Effect of Dexmedetomidine on Postoperative Lung Injury during One-Lung Ventilation in Thoracoscopic Surgery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4976205. [PMID: 33083468 PMCID: PMC7557917 DOI: 10.1155/2020/4976205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Objective To investigate the effect of dexmedetomidine on postoperative lung injury in patients undergoing thoracoscopic surgery. Methods From March 2019 to October 2019, 40 patients were randomly divided into two groups: dexmedetomidine group (group D) and control group (group C). Except recording the general condition of the patients in both groups preoperatively and intraoperatively, the oxygenation index (OI) and alveolar-arterial oxygen partial pressure difference (A-aDO2) were monitored at admission (T0), immediately after one-lung ventilation (T1), 0.5 h after one-lung ventilation (T2), and 15 minutes after inhaling air before leaving the room (T3). The content of IL-8 in arterial blood was measured by enzyme-linked immunosorbent assay (ELISA) at T0 and T2, and the expression of AQP1 protein in isolated lung tissue was measured by immunohistochemistry and Western blot. The incidence of postoperative pulmonary complications (atelectasis, pneumonia, and acute respiratory distress syndrome) was used as the index of lung injury. Results There was no significant difference in the general condition before and during operation between the two groups. There was no significant difference in arterial blood IL-8 content between the two groups at the T0 time point, but the arterial blood IL-8 content at the T2 time point was significantly higher than that at the T0 time point, especially in group C. The results of immunohistochemistry and Western blot showed that the expression level of AQP1 protein in the isolated lung tissue of group D was significantly higher than that of group C (P < 0 05). At T3, the OI of group D was significantly higher than that of group C, and the A-aDO2 of group D was significantly lower than that of group C (P < 0.05). There was no significant difference in the incidence of postoperative PPCs between the two groups. Conclusion Dexmedetomidine can reduce the level of plasma IL-8 and upregulate the expression of AQP1 in the lung tissue of patients undergoing thoracoscopic surgery under one-lung ventilation, but it has no significant effect on the incidence of postoperative PPCs. Dexmedetomidine can be safely used in thoracoscopic surgery and has a certain protective effect on lung injury.
Collapse
|
4
|
Chen H, Huang L, Yang D, Ye Q, Guo M, Qin R, Luo C, Li M, Ye L, Zhang B, Xu Y. Nodal Global Efficiency in Front-Parietal Lobe Mediated Periventricular White Matter Hyperintensity (PWMH)-Related Cognitive Impairment. Front Aging Neurosci 2019; 11:347. [PMID: 31920627 PMCID: PMC6914700 DOI: 10.3389/fnagi.2019.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
White matter hyperintensity (WMH) is widely observed in the elderly population and serves as a key indicator of cognitive impairment (CI). However, the underlying mechanism remains to be elucidated. Herein, we investigated the topological patterns of resting state functional networks in WMH subjects and the relationship between the topological measures and CI. A graph theory-based analysis was employed in the resting-state functional magnetic resonance scans of 112 subjects (38 WMH subjects with cognitive impairment without dementia (CIND), 36 WMH subjects with normal cognition and 38 healthy controls (HCs), and we found that WMH-CIND subjects displayed decreased global efficiency at the levels of the whole brain, specific subnetworks [fronto-parietal network (FPN) and cingulo-opercular network (CON)] and certain nodes located in the FPN and CON, as well as decreased local efficiency in subnetworks. Our results demonstrated that nodal global efficiency in frontal and parietal regions mediated the impairment of information processing speed related to periventricular WMH (PWMH). Additionally, we performed support vector machine (SVM) analysis and found that altered functional efficiency can identify WMH-CIND subjects with high accuracy, sensitivity and specificity. These findings suggest impaired functional networks in WMH-CIND individuals and that decreased functional efficiency may be a feature of CI in WMH subjects.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengdi Guo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
5
|
Wang H, Wang S, Zhang K, Wang H, Lan L, Ma X, Liu X, Zhang S, Zheng J, Wei X, Yan H. Aquaporin 4 Forms a Macromolecular Complex with Glutamate Transporter 1 and Mu Opioid Receptor in Astrocytes and Participates in Morphine Dependence. J Mol Neurosci 2017; 62:17-27. [PMID: 28341892 DOI: 10.1007/s12031-017-0905-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
Abstract
The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Evidence suggests that AQP4 is associated with glutamate transporter-1 (GLT-1) for glutamate clearance and contributes to morphine dependence. Previous studies show that AQP4 deficiency changed the mu opioid receptor expression and opioid receptors' characteristics as well. In this study, we focused on whether AQP4 could form macromolecular complex with GLT-1 and mu opioid receptor (MOR) and participates in morphine dependence. By using immunofluorescence staining, fluorescence resonance energy transfer, and co-immunoprecipitation, we demonstrated that AQP4 forms protein complexes with GLT-1 and MOR in both brain tissue and primary cultured astrocytes. We then showed that the C-terminus of AQP4 containing the amino acid residues 252 to 323 is the site of interaction with GLT-1. Protein kinase C, activated by morphine, played an important role in regulating the expression of these proteins. These findings may help to reveal the mechanism that AQP4, GLT-1, and MOR form protein complex and participate in morphine dependence, and deeply understand the reason that AQP4 deficiency maintains extracellular glutamate homeostasis and attenuates morphine dependence, moreover emphasizes the function of astrocyte in morphine dependence.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shiqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Hua Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Liting Lan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
6
|
Dempsey KM, Ali HH. Identifying aging-related genes in mouse hippocampus using gateway nodes. BMC SYSTEMS BIOLOGY 2014; 8:62. [PMID: 24886704 PMCID: PMC4057599 DOI: 10.1186/1752-0509-8-62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/12/2014] [Indexed: 12/16/2022]
Abstract
Background High-throughput studies continue to produce volumes of metadata representing valuable sources of information to better guide biological research. With a stronger focus on data generation, analysis models that can readily identify actual signals have not received the same level of attention. This is due in part to high levels of noise and data heterogeneity, along with a lack of sophisticated algorithms for mining useful information. Networks have emerged as a powerful tool for modeling high-throughput data because they are capable of representing not only individual biological elements but also different types of relationships en masse. Moreover, well-established graph theoretic methodology can be applied to network models to increase efficiency and speed of analysis. In this project, we propose a network model that examines temporal data from mouse hippocampus at the transcriptional level via correlation of gene expression. Using this model, we formally define the concept of “gateway” nodes, loosely defined as nodes representing genes co-expressed in multiple states. We show that the proposed network model allows us to identify target genes implicated in hippocampal aging-related processes. Results By mining gateway genes related to hippocampal aging from networks made from gene expression in young and middle-aged mice, we provide a proof-of-concept of existence and importance of gateway nodes. Additionally, these results highlight how network analysis can act as a supplement to traditional statistical analysis of differentially expressed genes. Finally, we use the gateway nodes identified by our method as well as functional databases and literature to propose new targets for study of aging in the mouse hippocampus. Conclusions This research highlights the need for methods of temporal comparison using network models and provides a systems biology approach to extract information from correlation networks of gene expression. Our results identify a number of genes previously implicated in the aging mouse hippocampus related to synaptic plasticity and apoptosis. Additionally, this model identifies a novel set of aging genes previously uncharacterized in the hippocampus. This research can be viewed as a first-step for identifying the processes behind comparative experiments in aging that is applicable to any type of temporal multi-state network.
Collapse
Affiliation(s)
| | - Hesham H Ali
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, USA.
| |
Collapse
|
7
|
Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Altmüller J, Becker C, Schöbel N, Hatt H, Gisselmann G. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 2013; 8:e79523. [PMID: 24260241 PMCID: PMC3832644 DOI: 10.1371/journal.pone.0079523] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.
Collapse
|
8
|
Bomholt J, Hélix-Nielsen C, Scharff-Poulsen P, Pedersen PA. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae. PLoS One 2013; 8:e56431. [PMID: 23409185 PMCID: PMC3569440 DOI: 10.1371/journal.pone.0056431] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/12/2013] [Indexed: 12/04/2022] Open
Abstract
In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.
Collapse
Affiliation(s)
| | - Claus Hélix-Nielsen
- Aquaporin A/S, Copenhagen, Denmark
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Scharff-Poulsen
- Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
9
|
Rathnasiri Bandara SM. Paranasal sinus nitric oxide and migraine: a new hypothesis on the sino rhinogenic theory. Med Hypotheses 2013; 80:329-40. [PMID: 23394937 DOI: 10.1016/j.mehy.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022]
Abstract
Migraine is a debilitating illness that has no exact bio molecule to explain its pathology. After reviewing the neurophysiological and biochemical basis of the research findings of nitric oxide and migraine, I present to the best of my knowledge the first para sinus nitric oxide mediated neurobiophysiological hypothesis for migraine of sino rhinogenic origin. The diffused paranasal sinus nitric oxide in the nasal mucosa could be the primary molecule that initiates migraine and is termed Sinus Hypoxic Nitric Oxide Theory. This hypothesis regards repetitive or intermittent activation of the trigeminal sensory nerve and blood vessels in the nasal mucosa. Production of paranasal sinus nitric oxide is mainly induced by hypoxia due to several independent factors and the diffusion of paranasal sinus nitric oxide depends on the vulnerable surface area in the nasal cavity. Apart from the known trigeminal nociceptive impulse in the migraine, two main peripheral trigeminal nerve activating mechanisms may induce migraine. First the nerve endings of the nasal mucosa which are directly stimulated by diffused paranasal sinus nitric oxide are indirectly stimulated by vasoactive substances released by antidromic activation of the nerve, parasympathetic efferent of the nerve and sterile neurogenic inflammation. Secondly, the perivascular nerve of nasal mucosal and the meningial blood vessels are directly stimulated by either diffused paranasal sinus nitric oxide or by shear stress mediation. The nerve impulses of the trigeminal sensory nerve, projected at trigeminal nucleus caudalis to the central nerve system and low plasma magnesium due to the consequence of shear stress gives rise to the symptoms of migraine. Moreover sino rhinogenic impulses may mediate to disruption of inhibitory sensitization modulated of sensory input and cause sensory hiperexcitability. In addition neuronal stimulation proposed by some migraine hypotheses could also give rise to migraine headache when the sino rhinogenic vulnerable factors induce the migraine pathophysiology. Indeed this article explains a new pathophysiological initiation between sino rhinogenic nitric oxide effects and migraine and provides an initial step for the obscured or neglected etiologically important neuro vascular impulse generating pathway. The patients who are clinically suspected of having headaches should receive comprehensive sino rhinological examination and evaluation based on the sinus hypoxic nitric oxide theory. A standard surgical and medical management of migraine that links with the sinus hypoxic nitric oxide theory may restore the hypoxic state or reduce or remove the paranasal sinus nitric oxide diffusing surface. It warrants clinical testing.
Collapse
|
10
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|
11
|
Water channel proteins in the peripheral nervous system in health and disease. Mol Aspects Med 2012; 33:605-11. [DOI: 10.1016/j.mam.2012.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022]
|
12
|
Ma TH, Gao HW, Fang XD, Yang H. Expression and function of aquaporins in peripheral nervous system. Acta Pharmacol Sin 2011; 32:711-5. [PMID: 21602841 DOI: 10.1038/aps.2011.63] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression and role of the aquaporin (AQP) family water channels in the peripheral nervous system was less investigated. Since 2004, however, significant progress has been made in the immunolocalization, regulation and function of AQPs in the peripheral nervous system. These studies showed selective localization of three AQPs (AQP1, AQP2, and AQP4) in dorsal root ganglion neurons, enteric neurons and glial cells, periodontal Ruffini endings, trigeminal ganglion neurons and vomeronasal sensory neurons. Functional characterization in transgenic knockout mouse model revealed important role of AQP1 in pain perception. This review will summarize the progress in this field and discuss possible involvement of AQPs in peripheral neuropathies and their potential as novel drug targets.
Collapse
|