1
|
Furukawa T, Nikaido Y, Shimoyama S, Ogata Y, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. J Anesth 2019; 33:531-542. [PMID: 31332527 DOI: 10.1007/s00540-019-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG). METHODS The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics. RESULTS PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice. CONCLUSIONS The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshiki Ogata
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Hirata
- School of Dental Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
3
|
Koga K, Shimoyama S, Yamada A, Furukawa T, Nikaido Y, Furue H, Nakamura K, Ueno S. Chronic inflammatory pain induced GABAergic synaptic plasticity in the adult mouse anterior cingulate cortex. Mol Pain 2018; 14:1744806918783478. [PMID: 29956582 PMCID: PMC6096674 DOI: 10.1177/1744806918783478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Chronic pain is a persistent unpleasant sensation that produces pathological synaptic plasticity in the central nervous system. Both human imaging study and animal studies consistently demonstrate that the anterior cingulate cortex is a critical cortical area for nociceptive and chronic pain processing. Thus far, the mechanisms of excitatory synaptic transmission and plasticity have been well characterized in the anterior cingulate cortex for various models of chronic pain. By contrast, the potential contribution of inhibitory synaptic transmission in the anterior cingulate cortex, in models of chronic pain, is not fully understood. Methods Chronic inflammation was induced by complete Freund adjuvant into the adult mice left hindpaw. We performed in vitro whole-cell patch-clamp recordings from layer II/III pyramidal neurons in two to three days after the complete Freund adjuvant injection and examined if the model could cause plastic changes, including transient and tonic type A γ-aminobutyric acid (GABAA) receptor-mediated inhibitory synaptic transmission, in the anterior cingulate cortex. We analyzed miniature/spontaneous inhibitory postsynaptic currents, GABAA receptor-mediated tonic currents, and evoked inhibitory postsynaptic currents. Finally, we studied if GABAergic transmission-related proteins in the presynapse and postsynapse of the anterior cingulate cortex were altered. Results The complete Freund adjuvant model reduced the frequency of both miniature and spontaneous inhibitory postsynaptic currents compared with control group. By contrast, the average amplitude of these currents was not changed between two groups. Additionally, the complete Freund adjuvant model did not change GABAA receptor-mediated tonic currents nor the set of evoked inhibitory postsynaptic currents when compared with control group. Importantly, protein expression of vesicular GABA transporter was reduced within the presynpase of the anterior cingulate cortex in complete Freund adjuvant model. In contrast, the complete Freund adjuvant model did not change the protein levels of GABAA receptors subunits such as α1, α5, β2, γ2, and δ. Conclusion Our results suggest that the induction phase of inflammatory pain involves spontaneous GABAergic plasticity at presynaptic terminals of the anterior cingulate cortex.
Collapse
Affiliation(s)
- Kohei Koga
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.,2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shuji Shimoyama
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.,3 Research Center for Child Mental Development, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Akihiro Yamada
- 2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomonori Furukawa
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoshikazu Nikaido
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Hidemasa Furue
- 2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiko Nakamura
- 3 Research Center for Child Mental Development, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shinya Ueno
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
4
|
Fujita T, Kumagai G, Liu X, Wada K, Tanaka T, Kudo H, Asari T, Fukutoku T, Sasaki A, Nitobe Y, Nikaido Y, Furukawa KI, Hirata M, Kanematsu T, Ueno S, Ishibashi Y. Poor Motor-Function Recovery after Spinal Cord Injury in Anxiety-Model Mice with Phospholipase C-Related Catalytically Inactive Protein Type 1 Knockout. J Neurotrauma 2018; 35:1379-1386. [DOI: 10.1089/neu.2017.5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xizhe Liu
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihiro Tanaka
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hitoshi Kudo
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayako Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
6
|
Nikaido Y, Furukawa T, Shimoyama S, Yamada J, Migita K, Koga K, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Propofol Anesthesia Is Reduced in Phospholipase C-Related Inactive Protein Type-1 Knockout Mice. J Pharmacol Exp Ther 2017; 361:367-374. [PMID: 28404686 DOI: 10.1124/jpet.116.239145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 11/22/2022] Open
Abstract
The GABA type A receptor (GABAA-R) is a major target of intravenous anesthetics. Phospholipase C-related inactive protein type-1 (PRIP-1) is important in GABAA-R phosphorylation and membrane trafficking. In this study, we investigated the role of PRIP-1 in general anesthetic action. The anesthetic effects of propofol, etomidate, and pentobarbital were evaluated in wild-type and PRIP-1 knockout (PRIP-1 KO) mice by measuring the latency and duration of loss of righting reflex (LORR) and loss of tail-pinch withdrawal response (LTWR). The effect of pretreatment with okadaic acid (OA), a protein phosphatase 1/2A inhibitor, on propofol- and etomidate-induced LORR was also examined. PRIP-1 deficiency provided the reduction of LORR and LTWR induced by propofol but not by etomidate or pentobarbital, indicating that PRIP-1 could determine the potency of the anesthetic action of propofol. Pretreatment with OA recovered the anesthetic potency induced by propofol in PRIP-1 KO mice. OA injection enhanced phosphorylation of cortical the GABAA-R β3 subunit in PRIP-1 KO mice. These results suggest that PRIP-1-mediated GABAA-R β3 subunit phosphorylation might be involved in the general anesthetic action induced by propofol but not by etomidate or pentobarbital.
Collapse
Affiliation(s)
- Yoshikazu Nikaido
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Tomonori Furukawa
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Shuji Shimoyama
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Junko Yamada
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Keisuke Migita
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Kohei Koga
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Tetsuya Kushikata
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Kazuyoshi Hirota
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Takashi Kanematsu
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Masato Hirata
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Shinya Ueno
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| |
Collapse
|
8
|
Kitayama T, Morita K, Sultana R, Kikushige N, Mgita K, Ueno S, Hirata M, Kanematsu T. Phospholipase C-related but catalytically inactive protein modulates pain behavior in a neuropathic pain model in mice. Mol Pain 2013; 9:23. [PMID: 23639135 PMCID: PMC3651726 DOI: 10.1186/1744-8069-9-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An inositol 1,4,5-trisphosphate binding protein, comprising 2 isoforms termed PRIP-1 and PRIP-2, was identified as a novel modulator for GABAA receptor trafficking. It has been reported that naive PRIP-1 knockout mice have hyperalgesic responses. FINDINGS To determine the involvement of PRIP in pain sensation, a hind paw withdrawal test was performed before and after partial sciatic nerve ligation (PSNL) in PRIP-1 and PRIP-2 double knockout (DKO) mice. We found that naive DKO mice exhibited normal pain sensitivity. However, DKO mice that underwent PSNL surgery showed increased ipsilateral paw withdrawal threshold. To further investigate the inverse phenotype in PRIP-1 KO and DKO mice, we produced mice with specific siRNA-mediated knockdown of PRIPs in the spinal cord. Consistent with the phenotypes of KO mice, PRIP-1 knockdown mice showed allodynia, while PRIP double knockdown (DKD) mice with PSNL showed decreased pain-related behavior. This indicates that reduced expression of both PRIPs in the spinal cord induces resistance towards a painful sensation. GABAA receptor subunit expression pattern was similar between PRIP-1 KO and DKO spinal cord, while expression of K(+)-Cl(-)-cotransporter-2 (KCC2), which controls the balance of neuronal excitation and inhibition, was significantly upregulated in DKO mice. Furthermore, in the DKD PSNL model, an inhibitor-induced KCC2 inhibition exhibited an altered phenotype from painless to painful sensations. CONCLUSIONS Suppressed expression of PRIPs induces an elevated expression of KCC2 in the spinal cord, resulting in inhibition of nociception and amelioration of neuropathic pain in DKO mice.
Collapse
Affiliation(s)
- Tomoya Kitayama
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Katsuya Morita
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Rizia Sultana
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Nami Kikushige
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Keisuke Mgita
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|