1
|
Yi X, Chen W, Guan J, Zhu J, Zhang Q, Yang H, Yang H, Zhong S, Chen C, Tan F, Ren T, Luo P. Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata. Int J Mol Sci 2023; 24:16973. [PMID: 38069295 PMCID: PMC10707396 DOI: 10.3390/ijms242316973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (W.C.); (J.G.); (J.Z.); (Q.Z.); (H.Y.); (H.Y.); (S.Z.); (C.C.); (F.T.); (T.R.)
| |
Collapse
|
2
|
Janko K, Mikulíček P, Hobza R, Schlupp I. Sperm-dependent asexual species and their role in ecology and evolution. Ecol Evol 2023; 13:e10522. [PMID: 37780083 PMCID: PMC10534198 DOI: 10.1002/ece3.10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm-dependent asexuals that produce non-recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm-dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping-stones in speciation, or indirectly, by promoting the formation of pre- and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm-dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short-lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm-dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Non‐Mendelian Evolution, Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicLiběchovCzech Republic
- Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaOklahomaNormanUSA
- Department of BiologyInternational Stock Center for Livebearing FishesOklahomaNormanUSA
| |
Collapse
|
3
|
Choi HI, Han SM, Jo YD, Hong MJ, Kim SH, Kim JB. Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:439. [PMID: 33669039 PMCID: PMC7996542 DOI: 10.3390/plants10030439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022]
Abstract
The response to gamma irradiation varies among plant species and is affected by the total irradiation dose and dose rate. In this study, we examined the immediate and ensuing responses to acute and chronic gamma irradiation in rice (Oryza sativa L.). Rice plants at the tillering stage were exposed to gamma rays for 8 h (acute irradiation) or 10 days (chronic irradiation), with a total irradiation dose of 100, 200, or 300 Gy. Plants exposed to gamma irradiation were then analyzed for DNA damage, oxidative stress indicators including free radical content and lipid peroxidation, radical scavenging, and antioxidant activity. The results showed that all stress indices increased immediately after exposure to both acute and chronic irradiation in a dose-dependent manner, and acute irradiation had a greater effect on plants than chronic irradiation. The photosynthetic efficiency and growth of plants measured at 10, 20, and 30 days post-irradiation decreased in irradiated plants, i.e., these two parameters were more severely affected by acute irradiation than by chronic irradiation. In contrast, acutely irradiated plants produced seeds with dramatically decreased fertility rate, and chronically irradiated plants failed to produce fertile seeds, i.e., reproduction was more severely affected by chronic irradiation than by acute irradiation. Overall, our findings suggest that acute gamma irradiation causes instantaneous and greater damage to plant physiology, whereas chronic gamma irradiation causes long-term damage, leading to reproductive failure.
Collapse
Affiliation(s)
- Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (H.-I.C.); (Y.D.J.); (M.J.H.); (S.H.K.)
| | - Sung Min Han
- Division of Ecological Safety, National Institute of Ecology, Seocheon 33657, Korea;
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (H.-I.C.); (Y.D.J.); (M.J.H.); (S.H.K.)
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (H.-I.C.); (Y.D.J.); (M.J.H.); (S.H.K.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (H.-I.C.); (Y.D.J.); (M.J.H.); (S.H.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (H.-I.C.); (Y.D.J.); (M.J.H.); (S.H.K.)
| |
Collapse
|
4
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
5
|
Toman J, Flegr J. Stability-based sorting: The forgotten process behind (not only) biological evolution. J Theor Biol 2017; 435:29-41. [PMID: 28899756 DOI: 10.1016/j.jtbi.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems.
Collapse
Affiliation(s)
- Jan Toman
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| | - Jaroslav Flegr
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
6
|
Jiang FF, Wang ZW, Zhou L, Jiang L, Zhang XJ, Apalikova OV, Brykov VA, Gui JF. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol Phylogenet Evol 2012; 66:350-9. [PMID: 23099150 DOI: 10.1016/j.ympev.2012.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Carassius auratus complex is believed to originate from East Eurasia and consist of diploid and triploid forms. Diploid form reproduces sexually, whereas triploid form possesses mixture modes of unisexual gynogenesis and sexual reproduction, which makes it a unique case to study evolutionary issues among vertebrates. In this study, we identified 337 triploid individuals from 386 specimens of Carassius auratus complex sampled from 4 different sites of Xingkai Lake and Suifen River on the northeast Asia transboundary areas of Russia and China, and found that triploids were ubiquitous, whereas diploids existed only in SII site of Suifen River. Triploid males were detected in all surveyed sites, and an unusually high triploid male incidence (23%) was found in the Chinese reach of Suifen River. Then, nuclear and cytoplasmic markers were used to analyze their genetic diversity and phylogenetic relationship. A total of 61 distinct tf alleles and 35 mtDNA CR haplotypes were revealed. Higher genetic diversity and divergence were confirmed in triploids than in diploids, and identical genetic background between triploid males and females was demonstrated. Moreover, evolutionary implications and roles of triploid males were suggested in population proliferation and diversity creation of the triploid form.
Collapse
Affiliation(s)
- Fang-Fang Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Johannesson K, Johansson D, Larsson KH, Huenchuñir CJ, Perus J, Forslund H, Kautsky L, Pereyra RT. FREQUENT CLONALITY IN FUCOIDS (FUCUS RADICANS AND FUCUS VESICULOSUS; FUCALES, PHAEOPHYCEAE) IN THE BALTIC SEA(1). JOURNAL OF PHYCOLOGY 2011; 47:990-8. [PMID: 27020180 DOI: 10.1111/j.1529-8817.2011.01032.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Asexual reproduction by cloning may affect the genetic structure of populations, their potential to evolve, and, among foundation species, contributions to ecosystem functions. Macroalgae of the genus Fucus are known to produce attached plants only by sexual recruitment. Recently, however, clones of attached plants recruited by asexual reproduction were observed in a few populations of Fucus radicans Bergström et L. Kautsky and F. vesiculosus L. inside the Baltic Sea. Herein we assess the distribution and prevalence of clonality in Baltic fucoids using nine polymorphic microsatellite loci and samples of F. radicans and F. vesiculosus from 13 Baltic sites. Clonality was more common in F. radicans than in F. vesiculosus, and in both species it tended to be most common in northern Baltic sites, although variation among close populations was sometimes extensive. Individual clonal lineages were mostly restricted to single or nearby locations, but one clonal lineage of F. radicans dominated five of 10 populations and was widely distributed over 550 × 100 km of coast. Populations dominated by a few clonal lineages were common in F. radicans, and these were less genetically variable than in other populations. As thalli recruited by cloning produced gametes, a possible explanation for this reduced genetic variation is that dominance of one or a few clonal lineages biases the gamete pool resulting in a decreased effective population size and thereby loss of genetic variation by genetic drift. Baltic fucoids are important habitat-forming species, and genetic structure and presence of clonality have implications for conservation strategies.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Daniel Johansson
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Karl H Larsson
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Cecilia J Huenchuñir
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Jens Perus
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Helena Forslund
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Lena Kautsky
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Ricardo T Pereyra
- Department of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, SwedenDepartment of Environmental and Marine Biology, Åbo Akademi University, FI-20520 Åbo, FinlandDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenDepartment of Marine Ecology - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| |
Collapse
|